Lecture 14: Support Vector
Machine (SVM)

Instructor: Prof. Shuai Huang
Industrial and Systems Engineering

University of Washington



What ambiguity the SVM ties to solve

* Which model should we use?
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The model with maximum margin

* SVM is essentially a preference over models that have maximum
margin
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Can this idea lead to mathematic tractability?

* The goal is to identify a model, w! x + b, using which we can make binary classification:
If wix+ b > 0,theny = 1; Otherwise, y = —1.
* The final SVM formulation is:
min [|w]|?,

Subject to: yn(wan + b) >1forn=1,2,..., N.
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Solve for SVM

* To solve this problem, first, we can use the method of Lagrange multiplier:
1
L(w,b, &) =~ lwll> = XN_; an[yn (W 2, + b) = 1].
* This could be rewritten as

Lw,b,a) = _W W — Zn 1C(nan Xn — bZn 10nYn T Zn 1 An-

» Differentiating L(w , ) with respect to w and b, and setting to zero yields:

N
W= Zn 1% YnXn, 2in=1%Yn = 0.

* Then, we can rewrite L(w, b a) as

Liw,b,a) = n 1n — Z 1Zm 1anamyn37mxnxm

e This is because that:

1 1,7 yN 1N
W W=-W Zln= 1“n)’nxn n=1InYnW' Xy =

1
n= 1anyn(z 1anYnxn) Xn = _Zn 1Zm 1anamYnymxnxm
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The dual form of SVM

* Finally, we can derive the model of SVM by solving its dual form
problem:

maX Zn 1%n — =1 Zm 1 anamynymxnxm/

Subject to:a, =0 forn =12,..,Nand X0 _. a,,y, = 0.

* This is a quadratic programming problem that can be solved using
many existing packages.



The support points

* The learned model parameters could be
represented as:

w=Y N . a,y,x,and b =1—wlx, forany
X, whose a,, > 0.

* And we know that, based on the KKT
condition:

an[yn(WTxn + b) — 1] =0forn=1,2,...,N.

* Thus, for any data point, e.g., the nth data
point, it is either

an =0ory,(w'x, +b)—1=0.
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A toy example

# For the toy problem

X = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1),
nrow = 7, ncol = 2)

y = ¢(1,1,1,1,-1,-1,-1)

linear.train <- data.frame(x,y)

# Visualize the distribution of data points o
f two classes
require( 'ggplot2' )

p <- gplot( data=linear.train, X1, X2, colour
=factor(y))

p <- p + labs(title =
ints of two classes")
print(p)
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A toy example — cont’d

* We can directly identify three support vectors, which are (ID = 3, 4, 5)
* Then, since
fx.) =we(x) +b =31 anyn d(x) ¢(x.) + b,
* and we know that f(x3) =1, f(x,) =1,f(x5) = —1.
* We can identify the alpha vector as
a3y (x3)" d(x3) + asyadp(xs)" d(x3) + asysp(xs) p(xs3) +b =1,
a3y3P(x3)" p(x4) + asysp(x0)" p(xy) + asysp(xs) Pp(x,) +b =1,
a3y3P(x3) P (xs5) + asyap(x4)" p(x5) + asysp(xs)" p(xs) + b = —1.



A toy example — cont’d

* Here, since the data is linearly separable, we use linear kernel, i.e., in other
words, ¢(x) = x. The equations above can be simplified to

5a; +3a, — 2as + b =1,
3a; +5a4, — 205+ b =1,
203 + 204 — s +b = —1.
* By solving it, we can get
a;=1,a,=1,a5 =2,b =-3.
e Further, we can know that

W = azys¢(x3) + ay,Pp(xy) + “5é3¢(x5) =1 (i) +1 (—21) Bk (g)) -
o)



A toy example — cont’d

* Validate your calculation using R

X = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1), nrow = 7, ncol = 2)
y=c(1,1,1,1,-1,-1,-1)

linear.train <- data.frame(x,y)

require( 'kernlab')

linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='vanilladot’,
C=10, scale=c(),scaled = FALSE)

alpha(linear.svm) #scaled alpha vector
b(linear.svm)



Extension to nonlinear cases

e Main idea: transformation from x to z

* An example: z; = x2, z, = \2x1xy, z3 = x2.

* But not in all times the transformations can be made explicit
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A toy example

e Consider a dataset: Scatterplot of data points of two
x;=(-1,-1),y; = —1; A
x, = (—1,+1),y, = +1; factor(y)
X3 = (+1,_1), V3 = +1, = . ::

Xg = (+1,+1), V4 = —1.



A toy example — cont’d

Now, considgr the polynomial kernel function with degree of order = 2, i.e., K(x,,, X,,;) =
(xflxm + c) , Which corresponds to the transformation:

T
d(x,) = [Cz; V2Cxy 1, Vzcxn,Zrﬁxn,lxn,Zix%,lix721,2] .

We can identify the alpha vector as

a1y1$(x1)" d(x1) + a2y, (x2)" d(x1) + asyzp(x3) p(x1) + asysp(xs) Pp(xy) +b = -1,
a1 Y19 (x1)" P (x3) + a2y, (x2) P (x2) + a3y3(x3)  d(x2) + asyap(xs) Pp(x2) +b =1,
a1y19(x1)" P(x3) + a2y, (x2)" P(x3) + azy3p(x3)" P(x3) + aayap(x2) p(x3) + b = -1,
a1 y19(x1) P (xs) + a2y, (x2) P (xs) + a3y30(x3)" P(x4) + asyap(xs) Pp(xy) +b = 1.



A toy example — cont’d

2
Since ¢ (x,) d(x,,) = K(x,,, x,) = (xgxm + c) , here, let’s set ¢ = 0, we can calculate
the kernel matrix as

O DO
O DO

FNISY=Y
I»-P OO »-[>I

The equations above can be simplified to
—4a, —4a, + b = —1,
4a, +4a3 +b =1,
4a, +4az; + b =1,
—4a, —4a, + b = —1.



A toy example — cont’d

You can note that, here, we actually only have two independent
equations. We can identify one solution to be:

a; = 0.125, a, = 0.125, a3 = 0.125, a, = 0.125, b = 0.

Further, in this particular case, as we can write up the transformation
explicitly, we can write up w explicitly as:

R T
w=Yr_1aymd(x,) =10,00,1/v2,0,0] .
Then, we can write up the decision function explicitly as:

f(x*) — WT¢(x*) = X4 1X%2-



A toy example — cont’d

* Validate your calculation using R

X = matrix(c(-1,-1,1,1,-1,1,-1,1), nrow = 4, ncol = 2)
v=c(-1,1,1,-1)

linear.train <- data.frame(x,y)

require( 'kernlab')

linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='polydot’,
kpar=list(degree = 2, offset = 1), C=10, scale =c(), scaled = FALSE)

alpha(linear.svm) #scaled alpha vector
b(linear.svm)
coef(linear.svm)



Extension to non-separable cases

* Introduce the slack variables:

Vo(Wlx, +b) =1—¢, forn = §
1,2,...,N. - -

* The data points that are within the e D
margins will have the 1
corresponding slack variables as o
0<¢,<1

* The data points that are on the T
wrong side of the decision line
have the corresponding slack D
variablesas &, > 1.
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The revised SVM formulation

* The corresponding formulation of the SVM model becomes:

.1
min3 Wll? + € 0z, &,

Subject to: yn(WTxn + b) >1—-¢,and ¢, =0,forn=1,2, ...



Assume the transformation exists

* The dual formulation of SVM on the transformed variables is:

N 1 oN N T
mélX Zn=1 an — E n=1 Zm:l AInCmYnYmLnZm,

Subjectto: 0 < a, < Cforn=12,..,Nand X1_; a,y, = 0.

* What matters here is really the inner product of the transformed
vectors

* Thus, we can write it up as z1z,, = K(x,,, x,,,). This is called the

“kernel function”. A kernel function is a function that theoretically
entails a transformation z = ¢(x) such that K(x,,, x,,,) implies that it
can be written as an inner product K (x,,, x,,,) = ¢(x,,)  p(x,,,).



The revised SVM formulation

e With a given kernel function, SVM learns the model by solving the
following optimization problem'

max YN gy, — 1 Xm=1 AV Ym K (X, X1),

SubJect to:0< a, < C forn=12,..,Nand XY_, a,y, = 0.

* However, in the kernel space, it will no longer to possible to write up the
parameter w the same way as in linear models.

* For any new data point, denoted as x,, the learned SVM model predict on
It as

if YN _ a,y,K(x,,x.)+b>0,theny =1;
Otherwise, y = —1.



s SVM a more complex model?

* In statistical learning theory, a more complex model has larger VC-
dimension. In intuitive language, that means, a more complex model
has more mathematical capacity to encode a richer signal. Thus, it
could be very flexible and sensitive to data distributions

 However, for SVM ...
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SVM is a neural network model

Bias

" K(x: xl)

Output
neuron

— K(xt xZ)

Input vector
=
Output variable

Kernels with
support vectors

<2



R [ab

* Download the markdown code from course website
e Conduct the experiments

* Interpret the results

* Repeat the analysis on other datasets



