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What ambiguity the SVM ties to solve

• Which model should we use?



The model with maximum margin 

• SVM is essentially a preference over models that have maximum 
margin



Can this idea lead to mathematic tractability? 

• The goal is to identify a model, 𝒘𝑇𝒙 + 𝑏, using which we can make binary classification:

If  𝒘𝑇𝒙 + 𝑏 > 0, then 𝑦 = 1; Otherwise, 𝑦 = −1.

• The final SVM formulation is:

min
𝒘

1

2
𝒘 2,

Subject to: 𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 ≥ 1 for 𝑛 = 1,2, … , 𝑁.



Solve for SVM

• To solve this problem, first, we can use the method of Lagrange multiplier:

𝐿 𝒘, 𝑏, 𝜶 =
1

2
𝒘 2 − σ𝑛=1

𝑁 𝛼𝑛 𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 − 1 .

• This could be rewritten as

𝐿 𝒘, 𝑏, 𝜶 =
1

2
𝒘𝑇𝒘−σ𝑛=1

𝑁 𝛼𝑛𝑦𝑛𝒘
𝑇𝒙𝑛 − 𝑏σ𝑛=1

𝑁 𝛼𝑛𝑦𝑛 +σ𝑛=1
𝑁 𝛼𝑛.

• Differentiating 𝐿 𝒘, 𝑏, 𝜶 with respect to 𝒘 and 𝑏, and setting to zero yields:

𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛,   σ𝑛=1

𝑁 𝛼𝑛𝑦𝑛 = 0.

• Then, we can rewrite 𝐿 𝒘, 𝑏, 𝜶 as

𝐿 𝒘, 𝑏, 𝜶 = σ𝑛=1
𝑁 𝛼𝑛 −

1

2
σ𝑛=1
𝑁 σ𝑚=1

𝑁 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛
𝑇𝒙𝑚.

• This is because that:
1

2
𝒘𝑇𝒘 =

1

2
𝒘𝑇 σ𝑛=1

𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 =
1

2
σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒘

𝑇𝒙𝑛 =
1

2
σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 σ𝑛=1

𝑁 𝛼𝑛𝑦𝑛𝒙𝑛
𝑇
𝒙𝑛 =

1

2
σ𝑛=1
𝑁 σ𝑚=1

𝑁 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛
𝑇𝒙𝑚.



The dual form of SVM

• Finally, we can derive the model of SVM by solving its dual form 
problem:

max
𝜶

σ𝑛=1
𝑁 𝛼𝑛 −

1

2
σ𝑛=1
𝑁 σ𝑚=1

𝑁 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛
𝑇𝒙𝑚,

Subject to: 𝛼𝑛 ≥ 0 for 𝑛 = 1,2,… , 𝑁 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0.

• This is a quadratic programming problem that can be solved using 
many existing packages. 



The support points

• The learned model parameters could be 
represented as:

ෝ𝒘 = σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝒙𝑛 and 𝑏 = 1 − ෝ𝒘𝑇𝒙𝑛 for any 

𝒙𝑛 whose 𝛼𝑛 > 0.

• And we know that, based on the KKT 
condition:

𝛼𝑛 𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 − 1 = 0 for 𝑛 = 1,2, … , 𝑁.

• Thus, for any data point, e.g., the nth data 
point, it is either 

𝛼𝑛 = 0 or 𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 − 1 = 0.



A toy example

# For the toy problem
x = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1), 
nrow = 7, ncol = 2)
y = c(1,1,1,1,-1,-1,-1)
linear.train <- data.frame(x,y)

# Visualize the distribution of data points o
f two classes
require( 'ggplot2' )

p <- qplot( data=linear.train, X1, X2, colour
=factor(y))
p <- p + labs(title = "Scatterplot of data po
ints of two classes")
print(p)



A toy example – cont’d 

• We can directly identify three support vectors, which are (ID = 3, 4, 5)

• Then, since

𝑓 𝒙∗ = ෝ𝒘𝑇𝜙 𝒙∗ + 𝑏 = σ𝑛=1
7 𝛼𝑛𝑦𝑛 𝜙 𝒙𝑛

𝑇𝜙 𝒙∗ + 𝑏,

• and we know that 𝑓 𝒙3 = 1, 𝑓 𝒙4 = 1,𝑓 𝒙5 = −1.

• We can identify the alpha vector as

𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙3 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙3 + 𝛼5𝑦5𝜙 𝒙5
𝑇𝜙 𝒙3 + 𝑏 = 1,

𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙4 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙4 + 𝛼5𝑦5𝜙 𝒙5
𝑇𝜙 𝒙4 + 𝑏 = 1,

𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙5 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙5 + 𝛼5𝑦5𝜙 𝒙5
𝑇𝜙 𝒙5 + 𝑏 = −1.



A toy example – cont’d 

• Here, since the data is linearly separable, we use linear kernel, i.e., in other 
words, 𝜙 𝒙 = 𝒙. The equations above can be simplified to

5𝛼3 + 3𝛼4 − 2𝛼5 + 𝑏 = 1,
3𝛼3 + 5𝛼4 − 2𝛼5 + 𝑏 = 1,
2𝛼3 + 2𝛼4 − 𝛼5 + 𝑏 = −1.

• By solving it, we can get
𝛼3 = 1, 𝛼4 = 1, 𝛼5 = 2, 𝑏 = −3.

• Further, we can know that

ෝ𝒘 = 𝛼3𝑦3𝜙 𝒙3 + 𝛼4𝑦4𝜙 𝒙4 + 𝛼5𝑦5𝜙 𝒙5 = 1
2
1

+ 1
2
−1

− 2
1
0

=
2
0

.



A toy example – cont’d 

• Validate your calculation using R

x = matrix(c(5,5,2,2,1,0,0,1,-1,1,-1,0,1,-1), nrow = 7, ncol = 2)

y = c(1,1,1,1,-1,-1,-1)

linear.train <- data.frame(x,y)

require( 'kernlab' )

linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='vanilladot', 
C=10, scale=c(),scaled = FALSE)

alpha(linear.svm) #scaled alpha vector

b(linear.svm)



Extension to nonlinear cases

• Main idea: transformation from 𝒙 to 𝒛

• An example: 𝑧1 = 𝑥1
2, 𝑧2 = 2𝑥1𝑥2, 𝑧3 = 𝑥2

2.

• But not in all times the transformations can be made explicit



A toy example

• Consider a dataset:

𝒙1 = −1,−1 , 𝑦1 = −1;

𝒙2 = −1,+1 , 𝑦2 = +1;

𝒙3 = +1,−1 , 𝑦3 = +1;

𝒙4 = +1,+1 , 𝑦4 = −1.



A toy example – cont’d 

Now, consider the polynomial kernel function with degree of order = 2, i.e., 𝐾 𝒙𝑛, 𝒙𝑚 =
𝒙𝑛
𝑇𝒙𝑚 + 𝑐

2
, which corresponds to the transformation:

𝜙 𝒙𝑛 = 𝑐2, 2𝑐𝑥𝑛,1, 2𝑐𝑥𝑛,2, 2𝑥𝑛,1𝑥𝑛,2, 𝑥𝑛,1
2 , 𝑥𝑛,2

2 𝑇
.

We can identify the alpha vector as

𝛼1𝑦1𝜙 𝒙1
𝑇𝜙 𝒙1 + 𝛼2𝑦2𝜙 𝒙2

𝑇𝜙 𝒙1 + 𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙1 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙1 + 𝑏 = −1,

𝛼1𝑦1𝜙 𝒙1
𝑇𝜙 𝒙2 + 𝛼2𝑦2𝜙 𝒙2

𝑇𝜙 𝒙2 + 𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙2 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙2 + 𝑏 = 1,

𝛼1𝑦1𝜙 𝒙1
𝑇𝜙 𝒙3 + 𝛼2𝑦2𝜙 𝒙2

𝑇𝜙 𝒙3 + 𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙3 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙3 + 𝑏 = −1,

𝛼1𝑦1𝜙 𝒙1
𝑇𝜙 𝒙4 + 𝛼2𝑦2𝜙 𝒙2

𝑇𝜙 𝒙4 + 𝛼3𝑦3𝜙 𝒙3
𝑇𝜙 𝒙4 + 𝛼4𝑦4𝜙 𝒙4

𝑇𝜙 𝒙4 + 𝑏 = 1.



A toy example – cont’d 

Since 𝜙 𝒙𝑛
𝑇𝜙 𝒙𝑚 = 𝐾 𝒙𝑛, 𝒙𝑚 = 𝒙𝑛

𝑇𝒙𝑚 + 𝑐
2

, here, let’s set 𝑐 = 0, we can calculate 
the kernel matrix as

𝑲 =

4 0
0 4

0 4
4 0

0 4
4 0

4 0
0 4

.

The equations above can be simplified to

−4𝛼1 − 4𝛼4 + 𝑏 = −1,

4𝛼2 + 4𝛼3 + 𝑏 = 1,

4𝛼2 + 4𝛼3 + 𝑏 = 1,

−4𝛼1 − 4𝛼4 + 𝑏 = −1.



A toy example – cont’d 

You can note that, here, we actually only have two independent 
equations. We can identify one solution to be:

𝛼1 = 0.125, 𝛼2 = 0.125, 𝛼3 = 0.125, 𝛼4 = 0.125, 𝑏 = 0.

Further, in this particular case, as we can write up the transformation 
explicitly, we can write up ෝ𝒘 explicitly as:

ෝ𝒘 = σ𝑛=1
4 𝛼𝑛𝑦𝑛𝜙 𝒙𝑛 = 0,0,0,1/ 2, 0,0

𝑇
.

Then, we can write up the decision function explicitly as:

𝑓 𝒙∗ = ෝ𝒘𝑇𝜙 𝒙∗ = 𝑥∗,1𝑥∗,2.



A toy example – cont’d 

• Validate your calculation using R

x = matrix(c(-1,-1,1,1,-1,1,-1,1), nrow = 4, ncol = 2)
y = c(-1,1,1,-1)
linear.train <- data.frame(x,y)
require( 'kernlab' )
linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel='polydot', 
kpar=list(degree = 2, offset = 1),  C = 10, scale = c(), scaled = FALSE)
alpha(linear.svm) #scaled alpha vector
b(linear.svm)
coef(linear.svm)



Extension to non-separable cases

• Introduce the slack variables:

𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 ≥ 1 − 𝜉𝑛 for 𝑛 =
1,2, … , 𝑁.

• The data points that are within the 
margins will have the 
corresponding slack variables as 
0 ≤ 𝜉𝑛 ≤ 1

• The data points that are on the 
wrong side of the decision line 
have the corresponding slack 
variables as 𝜉𝑛 > 1.



The revised SVM formulation 

• The corresponding formulation of the SVM model becomes:

min
𝒘

1

2
𝒘 2 + 𝐶 σ𝑛=1

𝑁 𝜉𝑛,

Subject to: 𝑦𝑛 𝒘𝑇𝒙𝑛 + 𝑏 ≥ 1 − 𝜉𝑛 and 𝜉𝑛 ≥ 0, for 𝑛 = 1,2, … , 𝑁.



Assume the transformation exists

• The dual formulation of SVM on the transformed variables is:

max
𝜶

σ𝑛=1
𝑁 𝛼𝑛 −

1

2
σ𝑛=1
𝑁 σ𝑚=1

𝑁 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒛𝑛
𝑇𝒛𝑚,

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2, … , 𝑁 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0.

• What matters here is really the inner product of the transformed 
vectors

• Thus, we can write it up as 𝒛𝑛
𝑇𝒛𝑚 = 𝐾 𝒙𝑛, 𝒙𝑚 . This is called the 

“kernel function”. A kernel function is a function that theoretically 
entails a transformation 𝒛 = 𝜙 𝒙 such that 𝐾 𝒙𝑛, 𝒙𝑚 implies that it 
can be written as an inner product 𝐾 𝒙𝑛, 𝒙𝑚 = 𝜙 𝒙𝑛

𝑇𝜙 𝒙𝑚 .



The revised SVM formulation 

• With a given kernel function, SVM learns the model by solving the 
following optimization problem:

max
𝜶

σ𝑛=1
𝑁 𝛼𝑛 −

1

2
σ𝑛=1
𝑁 σ𝑚=1

𝑁 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝐾 𝒙𝑛, 𝒙𝑚 ,

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2,… , 𝑁 and σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛 = 0.

• However, in the kernel space, it will no longer to possible to write up the 
parameter 𝒘 the same way as in linear models. 

• For any new data point, denoted as 𝒙∗, the learned SVM model predict on 
it as

If  σ𝑛=1
𝑁 𝛼𝑛𝑦𝑛𝐾 𝒙𝑛, 𝒙∗ + 𝑏 > 0, then 𝑦 = 1;

Otherwise, 𝑦 = −1.



Is SVM a more complex model?

• In statistical learning theory, a more complex model has larger VC-
dimension. In intuitive language, that means, a more complex model 
has more mathematical capacity to encode a richer signal. Thus, it 
could be very flexible and sensitive to data distributions 

• However, for SVM … 



SVM is a neural network model



R lab

• Download the markdown code from course website

• Conduct the experiments 

• Interpret the results 

• Repeat the analysis on other datasets 


