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PREFACE 
 

 

 

 

 

Students come to a classroom for knowledge. This is true, but we feel 

something is missing. Knowledge as we know is written and circulated. But, 

still, we feel a gap between us with knowledge, for there is always something 

in life that reminds us what we don’t know about what we know. To fill in 

the gap, we probably need that something we call as confidence. Thus, 

students come to a classroom not only just for knowledge, but also for 

confidence on knowledge. For the later aim, we need to comment on the 

workshop of the creation of knowledge. And the workshop revealed by one 

teacher is not necessary the same as the workshop revealed by another, as we 

can only retrospectively speculate what would have happened when our 

pioneers discovered the knowledge. Doing this kind of speculation is helpful, 

since it may enhance our faculty of critical thinking, capacity of learning 

theory, and commitment on practice. 

Thus, this book is not just a book of techniques. Rather, it is a book about 

techniques, about the workshops of researchers who work in the frontier of 

our academic area. Techniques are used for answering certain questions or 

meeting certain needs. This seems to be obvious. While less obvious is that, 

techniques give a structure for what kinds of questions we can formulate in 
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practice. Giving a structure is at the same time giving a limited scope, and 

thus, only certain types of structured questions can be formulated. For 

example, thinking of hypothesis testing, which first proposes a null 

hypothesis, then seeks evidence from the data to reject the null hypothesis. 

In this classic setting of hypothesis testing, “accepting” the hypothesis is not 

a valid option. This is the structured way to ask questions in a certain way. 

The structure is its strength, also its limitation.  

This is probably why it is often we see new comers in many areas find it 

is hard to ask the right questions. It is because that professionals in these 

areas have been educated with the mindset of asking the type of questions 

their techniques enable them to ask. This also means that knowing how the 

techniques work is very important. There are many books about data 

analytics techniques, so in this book, we discuss what principles we can use 

to invent these techniques, what assumptions are made, how mathematics is 

used to articulate these assumptions, and how these lead to neat formulations 

that generalize a wide range of real-world applications into generic and 

abstract forms. This makes us scientists. Meanwhile, as analytics is a practical 

area, we also need to develop engineer’s Craftsmanship. This means 

computational competency, programming skills, experiences, and insights 

that we can gain by practice. Not blind practice, but the type of practice 

informed by theory and can be used to reflect on theory retrospectively. 

Thus, the style of the book highlights a combination of technical 

concreteness and holistic thinking. As you could see, the Chapters are named 

as different qualities of holistic thinking in decision-makings, including 

“Abstraction”, “Recognition”, “Computation”, “Performance”, “Diagnosis”, 

“Balance”, “Scalability”, “Craftsmanship”, and “Synthesis”. It is true in 

nowadays “technology rules” environment, holistic thinking seems to be 

neglected.  But one can find so many examples to show that in real-world 

great decisions are made by someone who can articulate both panels’ 

strengths, as both are indispensable qualities for solving real-world problems. 

Holistic thinking is the foundation of how we formulate problems and how 

we could trust our formulations, as our formulations inevitably are only 
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biased and partial representation of the complex real-world problems. 

Holistic thinking is also the foundation of communication between team 

members of different backgrounds. With a diverse team, things that make 

sense intuitively will be very important to build team-wide trust in decision-

makings.  

This book is a collaborative work between two authors who both made 

substantial efforts. Particularly, Shuai focuses on the regression-based 

methods while Houtao focuses on the tree-based methods. Although these 

two types of methods represent two distinct cultures in statistical modeling, 

we have found many common considerations and principles underlying both 

cultures. Thus, we hope that a juxtaposition of both methods could help 

develop a unified picture of many existing data analytics tools.   

Last words to conclude the preface. The purpose of this book is not to 

encourage dismissal of the rigorous underpinnings of statistics and data 

analytics. Rather, we hope to help readers develop a critical attitude about 

techniques, while this critical attitude can only be enabled and maintained by 

a deep appreciation of the rigorous underpinnings of statistics and data 

analytics. You probably have heard of the saying that “technology is good 

when it works”. Technologies are cameras, which we can use to capture great 

moments in life; while on the other hand, they are also filters of life and only 

capture some of it. It is our hope that, after reading this book, you can use 

them to capture some truth of life.  
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CHAPTER 1: INTRODUCTION 
 

 

 

 

 

Overview of a Data Analytics Pipeline 

A typical data analytics pipeline consists of several major pillars. In the 

example shown in Figure 1.1, it has four pillars: sensor and devices, data 

preprocessing and feature engineering, feature selection and dimension 

reduction, modeling and data analysis. While this is not the only way to 

present the diverse data pipelines in real-world, they more or less resemble 

this architecture. 

 

 

Figure 1.1: Overview of a data analytics pipeline 

 



 

Analytics of Small Data 

13 
 

The pipeline starts with a real-world problem, for which we are not sure 

about the underlying system/mechanism, but we are able to characterize the 

system by defining some variables. Then, we could develop sensors and 

devices to acquire measurements of these variables. These measurements, we 

call as data, are objective evidences that we can use to explore the statistical 

principles or mechanistic laws regulating the system behaviors. But, before 

analyzing the data and building models using the data, in practice, the data 

preprocessing and feature engineering are important. For example, some 

signals acquired by sensors are not interpretable or not easily compatible with 

human sense, such as the signal acquired by MRI scanning machines in the 

Fourier space. Data preprocessing also refers to removal of outliers or 

imputation of missing data, detection and removal of redundant features, to 

name a few. After the preprocessing, we may conduct feature selection and 

dimension reduction to distill or condense signals in the data and reduce 

noise. Finally, we are ready to conduct modeling and data analysis on the 

prepared dataset to gain knowledge and build prediction models of the real-

world system. Decision-makings such as prediction, intervention, and control 

policies can be derived based on the fitted models to optimize and control 

the real-world system. 

This book focuses on the last two pillars of this pipeline, the modeling, 

data analysis, feature selection, and dimension reduction methods. But it is 

helpful to keep in mind of the big picture of a data analytics pipeline. Because 

in practice, what works is the whole pipeline.    

 

Structure of the Chapters 

The structures of the Chapters follow the same manner.  

 Each chapter will introduce two or three techniques. In most cases, 

one technique is about regression model while another one is about 

tree model.  

 For each technique, we will highlight the intuition and rationale 

behind it. 
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 Then, we articulate the intuition, use math to formulate the learning 

problem, and present the full version of the analytic formulation. But, 

it is always important to remember its intuitive underpinning.  

 Then, we use R to implement the technique on both simulated and 

real-world dataset, present the analysis process (together with R 

code), show the dynamics in the analysis process, and comment on 

the results.  

 Some remarks are also made to enhance understanding of the 

techniques, reveal their different natures by other perspectives, 

reveal their limitations, and mention existing remedies to overcome 

these limitations.  

 

Topics in a Nutshell 

Data models – regression based techniques: 

 Chapter 2: Linear regression, least-square estimation, hypothesis 
testing, why normal distribution, its connection with experimental 
design, R-squared. 

 Chapter 3: Logistic regression, generalized least square estimation, 
iterative reweighted least square (IRLS) algorithm, approximated 
hypothesis testing, Ranking as a linear regression 

 Chapter 4: Bootstrap, data resampling, nonparametric hypothesis 
testing, nonparametric confidence interval estimation 

 Chapter 5: Overfitting and underfitting, limitation of R-squared, 
training dataset and testing dataset, random sampling, K-fold cross 
validation, the confusion matrix, false positive and false negative, 
and Receiver Operating Characteristics (ROC) curve 

 Chapter 6: Residual analysis, normal Q-Q plot, Cook’s distance, 
leverage, multicollinearity, subset selection, heterogeneity, clustering, 
Gaussian mixture model (GMM), and the Expectation-
Maximization (EM) algorithm 

 Chapter 7: Support Vector Machine (SVM), generalize data versus 
memorize data, maximum margin, support vectors, model 
complexity and regularization, primal-dual formulation, quadratic 
programming, KKT condition, kernel trick, kernel machines, SVM 
as a neural network model 
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 Chapter 8: LASSO, sparse learning, L1-norm and L2-norm 
regularization, Ridge regression, feature selection, shooting 
algorithm, Principal Component Analysis (PCA), eigenvalue 
decomposition, scree plot  

 Chapter 9: Kernel regression as generalization of linear regression 
model, kernel functions, local smoother regression model, k-nearest 
regression model, conditional variance regression model, 
heteroscedasticity, weighted least square estimation, model 
extension and stacking 

Algorithmic models – tree based techniques: 

 Chapter 2: Decision tree, entropy gain, node splitting, pre- and post-
pruning, empirical error, generalization error, pessimistic error by 
binomial approximation, greedy recursive splitting 

 Chapter 4: Random forest, Gini index, weak classifiers, probabilistic 
mechanism why random forest works 

 Chapter 5: Out-of-bag (OOB) error in random forest 

 Chapter 6: Importance score, partial dependency plot, residual 
analysis 

 Chapter 7: Ensemble learning, Adaboost, sampling with (or without) 
replacement 

 Chapter 8: Importance score in random forest, regularized random 
forests (RRF), guided regularized random forests (GRRF) 

 Chapter 9: System monitoring reformulated as classification, real-
time contrasts method (RTC), design of monitoring statistics, sliding 
window, anomaly detection, false alarm 

 Chapter 10: Integration of tree models, feature selection, and 
regression models in inTrees, random forest as a rule generator, rule 
extraction, pruning, selection, and summarization, confidence and 
support of rules, variable interactions, rule-based prediction 
 

In this book, we will use lower-case letters, e.g., 𝑥, to represent scalars, bold-

face lower-case letters, e.g., 𝒗, to represent vectors, and bold-face upper-case 

letters, e.g., 𝑾, to represent matrices.  
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CHAPTER 2: ABSTRACTION  
REGRESSION and TREE MODELS  

 

 

 

 

 

I. Overview 

Chapter 2 is about “Abstraction”. It concerns how we model and 

formulate a problem using specific mathematical models. Abstraction is powerful. 

With identification of a few main entities (usually called as variables or 

features) from the problem, and characterization of their relationships, we 

can free ourselves from the application context and focus on the study of 

these interconnected entities as a pure mathematical system. Consequences 

can be analytically (rather than speculatively) established within this 

abstracted framework, while phenomenon in the context could be identified 

as special instances of this abstracted model.  

Generally, there are two main types of cultures for statistical modeling. 

Prof. Leo Brienman made these two cultures explicit as he articulated in his 

seminar paper1. One is the “data modeling” culture, while another one is the 

“algorithmic modeling” culture. In this book, we will focus on two models 

                                                      
1 Leo Breiman, Statistical Modeling: The Two Cultures. Statistical Science, 2001. 
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that are representative of each culture: the linear regression models (data 

modeling) and decision tree models (algorithmic modeling). Linear regression 

is a great example about statistics-driven considerations in modeling, while 

decision tree is a great example about computational- and nonparametric-

driven considerations in modeling.  

Many real-world problems usually present themselves in the form as a 

mystery, as highlighted as a blackbox in Figure 2.1. In these problems, there 

is usually an output variable (denoted as 𝑦) we care about and want to predict; 

meanwhile, to help us better understand the uncertainty of the output 

variable, we have other variables which we call as predictors (denoted as 𝑥1, 

𝑥2, …, 𝑥𝑝). We know that there are relationships between the predictors and 

the output, but these relationships are unknown, due to our lack of 

understanding of the system. It is not always plausible or economically 

feasible to develop a Newtonian style characterization of the system using 

differential equations. 

 

 

Figure 2.1: The blackbox nature of many data science problems  

 

A common criterion for evaluating the success of any model, no matter 

what type of culture it belongs to, is the prediction performance on the 

output variable given the input variables. It is fair to say that, almost all the 

models in both cultures could be summarized using a generic form: 

𝑦 = 𝑓(𝒙) + 𝜖, 

where 𝑓(𝒙) reflects the deterministic part of 𝑦 that can be determined by 

knowing 𝒙 , and 𝜖  reflects the uncertain part of 𝑦  that could not be 

determined by 𝒙 alone. In some texts, 𝑓(𝒙) is also called the model of the 

mean structure, i.e., since given any value of 𝒙 we can predict 𝑦 in the sense 

of an average; 𝜖 is usually called as the error term, noise term, or residual 
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term. Thus, 𝑓(𝒙) is a function of 𝒙 while 𝜖 is usually a distribution such as 

Gaussian distribution with mean as zero.  

With this understanding, we could summarize the different principles of 

both cultures in designing their belonging models: 

 

Table 2.1: Comparison between two cultures of models 

 𝑓(𝑥) 𝜖 “Cosmology” 

Data 
Modeling 

Explicit form 
(e.g., linear 
regression) 

Statistical 
distribution 

(e.g., Gaussian) 

Imply Cause and 
effect; articulate 

uncertainty 

Algorithmic 
Modeling 

Implicit form 
(e.g., tree 
model) 

Rarely modeled 
as structured 
uncertainty; 

only 
acknowledged 
as meaningless 

noise  

Look for 
accurate 

surrogate for 
prediction; to fit 
the data rather 
than to explain 

the data 

 

II. Regression Models 

II.1 Rationale and Formulation 

Let’s consider a simple regression model, where there is only one 

predictor 𝑥 to predict the outcome 𝑦. Linear regression model assumes a 

linear form of 𝑓(𝑥), e.g., 

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥, 

and a distribution form for 𝜖, e.g.,  

𝜖~𝑁(0, 𝜎𝜀
2). 

With this model, for any given value of 𝑥, we could predict the value of 𝑦 as 

𝛽0 + 𝛽1𝑥. Apparently, a few assumptions have been made: 

 There is linear relationship between 𝑥  and 𝑦 . And this linear 

relationship remains the same for all the values of 𝑥. This is often 

referred as a global relationship between 𝑥 and 𝑦. Sometimes this 

assumption of global relationship is too strong, e.g., as shown in the 
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Figure 2.2 below, in many drug research works, it is found that the 

dose (𝑥) is related to the effect of the drug (𝑦) in a varying manner 

that depends on the value of 𝑥. But, still, from Figure 2.2 we can also 

see that the linear line captures an essential component in the 

relationship between 𝑥  and 𝑦 , providing a good statistical 

approximation.    

 

 

Figure 2.2: Complex relationship between dose (𝑥) and drug response (𝑦), 

while the linear line also provides a good statistical approximation 

 

 The model suggests a fundamental unpredictability of 𝑦. That is to 

say, if 𝑦 is generated by a combination of the signal (the 𝑓(𝑥)) and 

the noise (𝜖), we could never predict the noise part. This has at least 

two implications. First, we can quantify the predictability of a dataset, 

by taking the ratio of 
𝜎𝑦
2−𝜎𝜀

2

𝜎𝑦
2 . Here, 𝜎𝑦

2 is the overall variance of the 

output regardless of any predictor information. This ratio is named 

as R-squared, that ranges from 0 (zero predictability) to 1 (perfect 

predictability). Second, the significance of 𝑥 in predicting 𝑦, and the 

accuracy of 𝑥 in predicting 𝑦, are two different concepts. A predictor 

𝑥 could be inadequate in predicting 𝑦, e.g., the R-squared could be 

as low as 0.1, but it still could be statistically significant. This happens 

a lot in social science research and education research projects. 
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 The noise is usually modeled as Gaussian distribution, but this 

assumption could be relaxed. Violation of the Gaussian assumption 

for 𝜀 could be a concern in many applications, but not as severe as 

other violations such as outliers in the dataset. Of course, this 

assertion is empirical, only mentioned here to guide practices, and 

should not be taken as a strict rule.  

 

II. 2 Theory/Method 

Parameter Estimation: The regression parameters could be estimated 

by the least-square estimation method. A training dataset is collected to 

estimate the unknown parameters in the model. The basic idea is, the best 

parameters should fit the training data as much as possible. This is illustrated 

in Figure 2.3, where two principles to fit a linear regression model are shown. 

The vertical offsets shown in the right of Figure 2.3 is the most popular 

approach though. Comparing with the perpendicular offsets shown in the 

left of Figure 2.3, the vertical offset leads to tractability in analytic forms, 

which is thus more preferred. 

 

 

 

 

Figure 2.3: Two principles to fit a linear regression model: (left) 

perpendicular offsets; (right) vertical offsets. 

 

 

Actually, the principle of minimizing vertical offsets leads to the least-

squares estimation of linear regression models. We can exercise the least 
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squares estimation using the simple regression model. The objective to 

determine the optimal line (or equivalently we can say to determine the 

optimal regression parameters), based on the principle suggested in the right 

one in Figure 2.3, is the sum of the squared of the vertical derivations of the 

observed data points from the line. Suppose that we have collected 𝑁 data 

points, denoted as, (𝑥𝑛, 𝑦𝑛) for 𝑛 = 1, 2, … ,𝑁. 

Then, the sum of the squared of the vertical derivations of the observed 

data points from the line is: 

𝑙(𝛽0, 𝛽1) = ∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]
2𝑁

𝑛=1 . 

To estimate 𝛽0  and 𝛽1  is to minimize this least-square loss function 

𝑙(𝛽0, 𝛽1). Thus, we could take derivatives of 𝑙(𝛽0, 𝛽1) regarding the two 

parameters and set them to be zero, to derive the estimation equations: 

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽0
= −2∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0, 

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽1
= −2∑ 𝑥𝑛[𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0. 

Putting these into a succinct way, we can derive  

[
𝑁 ∑ 𝑥𝑛

𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 ∑ 𝑥𝑛

2𝑁
𝑛=1

] [
𝛽0
𝛽1
] = [

∑ 𝑦𝑛
𝑁
𝑛=1

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

]. 

Thus, we can solve these two equations and derive the estimator of 𝛽0 

and 𝛽1 as 

𝛽0 =
(∑ 𝑦𝑛

𝑁
𝑛=1 )(∑ 𝑥𝑛

2𝑁
𝑛=1 )−(∑ 𝑥𝑛

𝑁
𝑛=1 )(∑ 𝑥𝑛𝑦𝑛

𝑁
𝑛=1 )

𝑛∑ 𝑥𝑛
2𝑁

𝑛=1 −(∑ 𝑥𝑛
𝑁
𝑛=1 )

2 , 

𝛽1 =
∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

∑ 𝑥𝑛
2𝑁

𝑛=1 −𝑁�̅�2
. 

While the above mathematical expression seems to be complex, there is 

another angle to take a look at it. Notice that the sample correlation between 

𝑥 and 𝑦 is: 

𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑛−�̅�)
𝑁
𝑛=1 (𝑦𝑛−�̅�)

𝑁−1
=

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

𝑁−1
, 

Also, the sample variance is defined as 

𝑣𝑎𝑟(𝑥) =
∑ 𝑥𝑛

2𝑁
𝑛=1 −𝑁�̅�2

𝑁−1
. 

We can rewrite the estimators of 𝛽0 and 𝛽1 as 
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𝛽0 = 𝑦 − 𝛽1𝑥, 

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
. 

A simple example: Let’s practice the estimation method using a simple 

example.  The dataset is shown in Table 2.2: 

 

Table 2.2: An exemplary dataset 

𝑋 1 3 3 5 5 6 8 9 

𝑌 2 3 5 4 6 5 7 8 

 

The R-code to verify your calculation: 

## Simple example of regression with one predictor 
data = data.frame(rbind(c(1,2),c(3,3),c(3,5),c(5,4),c(5,6),c(6,
5),c(8,7),c(9,8))) 
colnames(data) = c("Y","X") 
str(data) 

lm.YX <- lm(Y ~ X, data = data) 
summary(lm.YX) 

 

Extension to multivariate regression model: While this is the case for 

a simple regression model, we can extend this experience to a more general 

case: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 + 𝜀. 

To fit this multivariate linear regression model, we collect 𝑛 data points, 

denoted as 

𝒚 = [

𝑦1
𝑦2
⋮
𝑦𝑁

], 𝐗 = [

1 𝑥11 𝑥21 ⋯ 𝑥𝑝1
1 𝑥12 𝑥22 ⋯ 𝑥𝑝2

⋮
1

⋮
𝑥1𝑁

⋮
𝑥2𝑁

⋮
⋯

⋮
𝑥𝑝𝑁

], 

where 𝒚 ∈ 𝑅𝑁×1 denotes for the 𝑛 measurements of the response variable, 

and 𝐗 ∈ 𝑅𝑁×(𝑝+1)  denotes for the design matrix that includes the 𝑁 

measurements of the 𝑝 input variables. 
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Then, the regression model can be rewritten in its matrix form as: 

𝒚 = 𝐗𝜷 + 𝜺. 

Here, 𝜷 ∈ 𝑅(𝑝+1)×1  denotes for the regression parameters and 𝜺 ∈

𝑅𝑁×1  denotes for the 𝑁 residuals which are assumed to follow a normal 

distribution with mean as zero and variance as 𝜎𝜀
2. 

 A detailed presentation of them is shown in below: 

𝜷 = [

𝛽0
𝛽1
⋮
𝛽𝑝

], and 𝜺 = [

𝜀1
𝜀2
⋮
𝜀𝑁

]. 

Then, to estimate 𝜷, we can derive the optimization formulation in matrix 

form as: 

min
𝜷
(𝒀 − 𝐗𝜷)𝑇(𝒀 − 𝐗𝜷), 

To solve this optimization problem, we can take the gradient of the 

objective function and set it to be zero: 

𝜕(𝒀−𝐗𝜷)𝑇(𝒀−𝐗𝜷)

𝜕𝜷
= 0, 

which gives rise to the equation: 

𝐗𝑇(𝒀 − 𝐗𝜷) = 0. 

This leads to the least square estimator of  𝜷 as 

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀. 

A resemblance can be easily detected between �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀 with 

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
 by noticing that 𝐗𝑇𝒀 (corresponds to 𝑐𝑜𝑣(𝑥, 𝑦)) reflects the 

correlation between predictors and output, and 𝐗𝑇𝐗  (corresponds to 

𝑣𝑎𝑟(𝑥)) reflects the variability of the predictors. 
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Hypothesis testing of regression parameters: It is important to 

recognize that, since 𝒚 is a random vector and induce uncertainty, �̂� is a 

random vector as well. The mean of �̂� is 𝜷, as 

𝐸(�̂�) = 𝐸[(𝐗𝑇𝐗)−1𝐗𝑇𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐸[𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝜷 = 𝜷. 

While the covariance matrix of �̂� can be readily derived as 

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2(𝐗𝑇𝐗)−1. 

This result lays the foundation for developing hypothesis testing of the 

regression parameters.  

For example, as a typical hypothesis testing question, let’s say, the null 

hypothesis is  

𝐻0: 𝛽𝑖 = 0. 

By theory, it is known that �̂�𝑖~𝑁(𝛽𝑖,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). Thus, if our null hypothesis 

is true, then, �̂�𝑖~𝑁(0,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). This gives us the theoretical ground to make 

conjecture of what our estimate �̂�𝑖 is “supposed to be”, i.e., as shown below, 

�̂�𝑖 is supposed to come from a normal distribution with mean as zero and 

variance as 
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 (in a specific application, 
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 can be calculated and take a 

specific value):  

 

 

Figure 2.4: The distribution of �̂�𝑖 
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Based on this theory, we can see there is clearly a dominance of likelihood 

of what kind of �̂�𝑖 we can observe. We could define a range of �̂�𝑖 that we 

believe as plausible (i.e., if the null hypothesis is true, then it is normal to see 

this value of �̂�𝑖). Note that I use plausible in contrast with possible, since our 

theory tells us any value is always possible, but the possibility is not equally 

distributed among all the values as shown in the Figure 2.4. Also, our 

common sense tells us that some extreme values are always suspicious, 

pointing to rare chance. We may define a level of probability that represents 

our threshold of rare chance. We coin this threshold level as 𝛼.  

 

 

Figure 2.5: The framework of hypothesis testing  

 

Now we have almost established the framework of hypothesis testing for 

regression parameters. With the threshold level 𝛼, we have made a decision that 

we will conclude that any value of �̂�𝑖 that falls into either side of the two 

extreme regions is unlikely – if the null hypothesis is true. Thus, if we see 

value in either side of the two extreme regions, we will reject the null 

hypothesis, since this indicates a strong conflict between theory (things are 

supposed to be) and our empirical evidence (as what we observed on �̂�𝑖 ). 

This framework is shown in Figure 2.5. 
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Of course, we are conscious that we make a decision with a risk. We may 

be wrong, since even if the null hypothesis is true, there is still a small 

probability, 𝛼, that we may observe the �̂�𝑖 falls into either side of the two 

extreme regions. But we have accepted this risk. This risk is called the Type 

1 Error.  

 

II.3 R Lab 

In this section, we illustrate step-by-step R codes to show how the linear 

regression model can be used in real-world data analysis. A distinct feature of 

this illustration lies on the “real-worldliness” of the data that embodies both 

statistical regularities (such that this analysis is enabled and called for) and 

realistic irregularities (such that we may recall the famous saying of Prof. 

George Box – “all models are wrong, some are useful”). Making informed 

decisions by drawing from rigorous theories, while at the same time, 

maintaining a critical attitude of theory, should both present simultaneously 

in practices of data analytics.  

Here, our data is from a study of Alzheimer’s disease that collected 

demographics information and some genetic variables from hundreds of 

subjects. The goal of this dataset is to use these predictors to predict the score 

called Mini-Mental State Examination (MMSCORE) which is a clinical score 

(from 0-30) for determining Alzheimer’s disease, i.e., a MMSCORE of 20 to 24 

suggests mild dementia, 13 to 20 suggests moderate dementia, and less than 

12 indicates severe dementia.  

First, let’s load the data into the R workshop:  

#### Example: Alzheimer's Disease 
# filename 
setwd("…/analytics/data") 
AD <- read.csv('AD_bl.csv', header = TRUE) 
AD$ID = c(1:dim(AD)[1]) 

It is a nice habit to make detailed documentations of the variables with R 

using comments: 
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# Description of variables 
# ID  ID of the subjects 
# Age Age 
# PTGENDER Gender 
# PTEDUCAT Years of education 
# FDG Average FDG-PET 
# AV45 Average AV45 SUVR 
# HippoNV The normalized hippocampus volume 
# e2_1 Apolipoprotein E4 polymorphism 
# e4_1 Apolipoprotein E4 polymorphism 
# rs3818361 CR1 gene rs3818361 polymorphism 
# rs744373 BIN1 gene rs744373 polymorphism 
# rs11136000 Clusterin CLU gene rs11136000 polymorphism 
# rs610932 MS4A6A gene rs610932 polymorphism 
# rs3851179 PICALM gene rs3851179 polymorphism 
# rs3764650 ABCA7 gene rs3764650 polymorphism 
# rs3865444 CD33 gene rs3865444 polymorphism 
# MMSCORE Mini-mental state examination (outcome variable) 
# TOTAL13 Alzheimer's Disease Assessment Scale (outcome variable) 

After loading the data into the R workshop, we could use the str() 

function to give a sketchy overview of the data: 

str(AD) 

## 'data.frame':    517 obs. of  5 variables: 
##  $ MMSCORE : int  26 30 30 28 29 30 30 27 28 30 ... 
##  $ AGE     : num  71.7 77.7 72.8 69.6 70.9 65.1 79.6 73.6 60.7
 70.6 ... 
##  $ PTGENDER: int  2 1 2 1 1 2 2 2 1 2 ... 
##  $ PTEDUCAT: int  14 18 18 13 13 20 20 18 19 18 ... 
##  $ ID      : int  1 2 3 4 5 6 7 8 9 10 ... 

First, let’s build a regression model that only uses demographics variables. 

Demographics variables are usually the most accessible information of 

patients which we can use to build prediction models.  

We can create a subset of the dataset as: 

# subset of variables we want in our first model that only uses d
emographics predictors 
AD_demo <- subset(AD, select=c("MMSCORE", "AGE","PTGENDER","PTEDU
CAT","ID")) 
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Before building the model, by the spirit of exploratory data analysis 

(EDA)1, we may draw the scatterplots to see how potentially the predictors 

can predict the outcome: 

# ggplot: Plot the scatterplot of the data 
# install.packages("ggplot2") 
library(ggplot2) 

p <- ggplot(AD_demo, aes(x = PTEDUCAT, y = MMSCORE)) 
p <- p + geom_point(size=2) 
# p <- p + geom_smooth(method = "auto") 
p <- p + labs(title="MMSE versus PTEDUCAT") 
print(p) 

 

 
Figure 2.6: Scatterplots of (left) MMSCORE versus AGE and (right) MMSE versus 

PTEDUCAT 

 

The scatterplots are shown in Figure 2.6. They show that there are weak 

relationships between the predictors with the MMSCORE, while still the 

relationship seems to be significant.  

Then, we can use the lm() function to fit the regression model 

# fit a simple linear regression model with only AGE 
lm.AD_demo <- lm(MMSCORE ~ AGE, data = AD_demo) 
# use summary() to get t-tests of parameters (slope, intercept) 
summary(lm.AD_demo) 

                                                      
1 John W. Tukey is a statistician whose career is known to be a strong advocate 

of EDA. See his book: Exploratory data analysis in 1977.  
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##  
## Call: 
## lm(formula = MMSCORE ~ AGE, data = AD_demo) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.7020 -0.9653  0.6948  1.6182  2.5447  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 30.44147    0.94564  32.191   <2e-16 *** 
## AGE         -0.03333    0.01296  -2.572   0.0104 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.11 on 515 degrees of freedom 
## Multiple R-squared:  0.01268,    Adjusted R-squared:  0.01076  
## F-statistic: 6.614 on 1 and 515 DF,  p-value: 0.0104 

Some important details could be read from the results shown above. First, 

it can be seen that the predictor, AGE, is significant with p-value as 0.0104 by 

the hypothesis testing procedure we delineated in Section II.2. It also seems 

that, the effect of this predictor, comparing with the noise, is rather weak, as 

the R-squared is only 0.01268, suggesting that only 1.2% of the variability in 

MMSCORE could be explained by AGE alone.  

To increase the R-squared, now let’s include all the demographics 

variables into the model: 

# fit the multiple linear regression model with more than one pre
dictor 
lm.AD_demo2 <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD_
demo) 
summary(lm.AD_demo2) 

##  
## Call: 
## lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD_de
mo) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.4290 -0.9766  0.5796  1.4252  3.4539  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
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## (Intercept) 27.70377    1.11131  24.929  < 2e-16 *** 
## AGE         -0.02453    0.01282  -1.913   0.0563 .   
## PTGENDER    -0.43356    0.18740  -2.314   0.0211 *   
## PTEDUCAT     0.17120    0.03432   4.988 8.35e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.062 on 513 degrees of freedom 
## Multiple R-squared:  0.0612, Adjusted R-squared:  0.05571  
## F-statistic: 11.15 on 3 and 513 DF,  p-value: 4.245e-07 

From the results shown above we can see that, the predictor AGE is now 

on the boardline of significance with a p-value as 0.0563. The other 

predictors, PTGENDER and PTEDUCAT, are significant. It also seems that the R-

squared now increases from 0.01268 to 0.0612, suggesting that 6.12% of the 

variability in MMSCORE could be explained by the three variables. The reason 

that the predictor AGE is now no longer significant is an interesting 

phenomenon, but it is not unusual that a significant predictor becomes 

insignificant when other variables are included or excluded. This is because 

of the statistical dependence of the estimation of the predictors. As we have 

known that  

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2(𝐗𝑇𝐗)−1. 

As long as 𝐗𝑇𝐗 is not an identify matrix, the estimators of the regression 

parameters are dependent in a complicated and data-driven way. Due to this 

reason, we need to be very cautious about how to interpret the regression 

parameters as they are actually interrelated and also depend on the modeling 

process. 

Having said that, regression model is still a useful approach to provide 

prediction power and insights about the data. Now let’s build a full model 

with all the demographics, genetics, and imaging variables to predict MMSCORE.  

# fit a full-scale model 
AD_full <- AD[,c(1:16)] 
lm.AD <- lm(MMSCORE ~ ., data = AD_full) 

summary(lm.AD) 

##  
## Call: 
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## lm(formula = MMSCORE ~ ., data = AD_full) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -6.3201 -1.0265  0.2765  1.1977  4.1463  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 18.09118    1.69735  10.659  < 2e-16 *** 
## AGE          0.01365    0.01197   1.140 0.254794     
## PTGENDER    -0.13146    0.16356  -0.804 0.421944     
## PTEDUCAT     0.16020    0.02947   5.436 8.53e-08 *** 
## FDG          0.86143    0.13368   6.444 2.74e-10 *** 
## AV45        -1.55526    0.42909  -3.625 0.000319 *** 
## HippoNV      7.27789    1.20610   6.034 3.11e-09 *** 
## e2_1        -0.03103    0.27459  -0.113 0.910068     
## e4_1        -0.18525    0.17651  -1.049 0.294456     
## rs3818361    0.18737    0.16373   1.144 0.253007     
## rs744373    -0.30165    0.15576  -1.937 0.053359 .   
## rs11136000  -0.03018    0.16423  -0.184 0.854257     
## rs610932    -0.34879    0.16208  -2.152 0.031872 *   
## rs3851179    0.05742    0.15675   0.366 0.714276     
## rs3764650    0.31522    0.19691   1.601 0.110049     
## rs3865444   -0.38589    0.15474  -2.494 0.012960 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.744 on 501 degrees of freedom 
## Multiple R-squared:  0.3443, Adjusted R-squared:  0.3246  
## F-statistic: 17.54 on 15 and 501 DF,  p-value: < 2.2e-16 

From the results shown above we can see that, the PTEDUCAT FDG, AV45, 

HoppoNV, rs610932, and rs3865444, are significant. It also seems that the R-

squared now increases from 0.0612to 0.3443, suggesting that now 33.43% 

of the variability in MMSCORE could be explained by the variables.  

We also notice that there are many variables showing insignificant p-

values. Thus, we may conduct a feature selection procedure to delete the 

insignificant variables from the model. Roughly speaking, there are two 

approaches. One is called stepwise backward that begins with a full model, 

and sequentially remove variables. Another approach is called the stepwise 

forward, that begins with a one-predictor model and then sequentially adds 
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variables into the model. Here, let’s use the stepwise backward method for 

an example to show how it works.  

The first variable to be removed from the model is the one that has the 

largest p-value (thus least significant).  

# Do we need all the variables? 
# remove e2_1, as it is least significant 
lm.AD.reduced <- lm.AD; 
lm.AD.reduced <- update(lm.AD.reduced, ~ . - e2_1);  
summary(lm.AD.reduced); 

##  
## Call: 
## lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 
+  
##     HippoNV + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610
932 +  
##     rs3851179 + rs3764650 + rs3865444, data = AD_full) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -6.3189 -1.0216  0.2807  1.2016  4.1466  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 18.08148    1.69351  10.677  < 2e-16 *** 
## AGE          0.01367    0.01196   1.143 0.253499     
## PTGENDER    -0.13191    0.16335  -0.808 0.419758     
## PTEDUCAT     0.16022    0.02944   5.442 8.25e-08 *** 
## FDG          0.86185    0.13350   6.456 2.54e-10 *** 
## AV45        -1.55316    0.42826  -3.627 0.000316 *** 
## HippoNV      7.27258    1.20400   6.040 3.00e-09 *** 
## e4_1        -0.18202    0.17401  -1.046 0.296053     
## rs3818361    0.18809    0.16345   1.151 0.250379     
## rs744373    -0.30116    0.15555  -1.936 0.053417 .   
## rs11136000  -0.03037    0.16406  -0.185 0.853200     
## rs610932    -0.34840    0.16188  -2.152 0.031854 *   
## rs3851179    0.05936    0.15565   0.381 0.703078     
## rs3764650    0.31553    0.19670   1.604 0.109322     
## rs3865444   -0.38599    0.15459  -2.497 0.012848 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.742 on 502 degrees of freedom 
## Multiple R-squared:  0.3443, Adjusted R-squared:  0.326  
## F-statistic: 18.82 on 14 and 502 DF,  p-value: < 2.2e-16 
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It can be seen that the R-squared is not affected. To formally draw a 

conclusion, we can compare the full model with this new model by F-test 

that is implemented in anova(): 

anova(lm.AD.reduced,lm.AD) 

## Analysis of Variance Table 
##  
## Model 1: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +  
##     e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932 + rs38
51179 +  
##     rs3764650 + rs3865444 
## Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +  
##     e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +  
##     rs3851179 + rs3764650 + rs3865444 
##   Res.Df    RSS Df Sum of Sq      F Pr(>F) 
## 1    502 1523.2                            
## 2    501 1523.1  1  0.038826 0.0128 0.9101 

And we can see that it is statistically indistinguishable between the two 

models by the F-test, with p-value as 0.9101.  

We then move forward to delete the latest least significant predictor, 

rs11136000: 

lm.AD.reduced <- update(lm.AD.reduced, ~ . - rs11136000);  
summary(lm.AD.reduced); 

##  
## Call: 
## lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 
+  
##     HippoNV + e4_1 + rs3818361 + rs744373 + rs610932 + rs38511
79 +  
##     rs3764650 + rs3865444, data = AD_full) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -6.3315 -1.0138  0.2713  1.1929  4.1375  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 18.05037    1.68353  10.722  < 2e-16 *** 
## AGE          0.01360    0.01194   1.139 0.255316     
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## PTGENDER    -0.13228    0.16318  -0.811 0.417982     
## PTEDUCAT     0.16035    0.02941   5.453 7.78e-08 *** 
## FDG          0.86249    0.13333   6.469 2.34e-10 *** 
## AV45        -1.54367    0.42477  -3.634 0.000308 *** 
## HippoNV      7.26894    1.20268   6.044 2.93e-09 *** 
## e4_1        -0.18292    0.17377  -1.053 0.293003     
## rs3818361    0.19161    0.16218   1.181 0.237973     
## rs744373    -0.30130    0.15540  -1.939 0.053077 .   
## rs610932    -0.34802    0.16171  -2.152 0.031863 *   
## rs3851179    0.06092    0.15527   0.392 0.694989     
## rs3764650    0.31577    0.19651   1.607 0.108700     
## rs3865444   -0.38681    0.15437  -2.506 0.012536 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.74 on 503 degrees of freedom 
## Multiple R-squared:  0.3442, Adjusted R-squared:  0.3273  
## F-statistic: 20.31 on 13 and 503 DF,  p-value: < 2.2e-16 

Again, we can compare the full model with this new model by F-test 

anova(lm.AD.reduced,lm.AD) 

## Analysis of Variance Table 
##  
## Model 1: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +  
##     e4_1 + rs3818361 + rs744373 + rs610932 + rs3851179 + rs376
4650 +  
##     rs3865444 
## Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +  
##     e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +  
##     rs3851179 + rs3764650 + rs3865444 
##   Res.Df    RSS Df Sum of Sq      F Pr(>F) 
## 1    503 1523.2                            
## 2    501 1523.1  2   0.14282 0.0235 0.9768 
 

We can repeat this process, until no more variable could be deleted.  

While this approach is simple and gives us great visibility of the model 

selection process, it is a tedious process. Automation of this process could 

be achieved by the function step(), as shown in below: 

# Automatic model selection 
lm.AD.F <- step(lm.AD, direction="backward", test="F") 
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Then we can obtain the final selected model as: 

## Step:  AIC=581.47 
## MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373 + rs61093
2 +  
##     rs3764650 + rs3865444 
##  
##             Df Sum of Sq    RSS    AIC F value    Pr(>F)     
## <none>                   1537.5 581.47                       
## - rs3764650  1     7.513 1545.0 581.99  2.4824  0.115750     
## - rs744373   1    12.119 1549.6 583.53  4.0040  0.045924 *   
## - rs610932   1    14.052 1551.6 584.17  4.6429  0.031652 *   
## - rs3865444  1    21.371 1558.9 586.61  7.0612  0.008125 **  
## - AV45       1    50.118 1587.6 596.05 16.5591 5.467e-05 *** 
## - PTEDUCAT   1    82.478 1620.0 606.49 27.2507 2.610e-07 *** 
## - HippoNV    1   118.599 1656.1 617.89 39.1854 8.206e-10 *** 
## - FDG        1   143.852 1681.4 625.71 47.5288 1.614e-11 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

It can be seen that the predictors kept in the final model are all significant. 

Also, the R-squared is 0.3381 using the 8 predictors. This is not bad 

comparing with the R-squared as 0.3443 by using all the 15 predictors. Again, 

we can compare the full model with this final model by F-test, which shows 

that the it is statistically indistinguishable between the two models by the F-

test, with p-value as 0.6913. 

anova(lm.AD.F,lm.AD) 

## Analysis of Variance Table 
##  
## Model 1: MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373 
+ rs610932 +  
##     rs3764650 + rs3865444 
## Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +  
##     e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +  
##     rs3851179 + rs3764650 + rs3865444 
##   Res.Df    RSS Df Sum of Sq      F Pr(>F) 
## 1    508 1537.5                            
## 2    501 1523.1  7    14.414 0.6773 0.6913 
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II.4 Remarks 

The regression model is a very useful model, while at the same time, it is 

a model that demands a great amount of meticulous analysis and justification. 

It also a model that is frequently reported to be a troublemaker for confusion 

or misinterpretation, while a common misinterpretation is to treat the 

statistical significance of a predictor as a causal significance in the application 

context. Indeed, it is tempting to ignore the statistical nature of the regression 

model and treat it as a causal model given its asymmetric form (i.e., predictors 

are in one side of equation while outcome is in the other side). As we have 

seen in our example, some variables showing significance may disappear 

when other variables are added into the model, providing empirical evidences 

that the regression model is essentially a hypothesized model, whose 

statistical validity relies on its goodness-of-fit on the data. 

A model fits the data well and passes the significance test only means that 

in data there is nothing significant against the model, but this fit process 

doesn’t mean we found in data that this model is the only causal model that 

excludes the possibility of other models.  

Related to this, as we briefly mentioned before, the design of experiment 

(DOE) is a discipline which tries to provide systematic data collection 

procedure to render the regression model as a causal inference model. How 

this could be done demands a lengthy discussion and illustration. Here, we 

briefly review its foundation to see why it has the connection with linear 

regression model.  

It can be seen that, the uncertainty of �̂� mainly comes from two sources, 

the variability from the data that is encoded in 𝜎𝜀
2, and the structure of 𝐗. 

The noise encoded in 𝜎𝜀
2 reflects essential uncertainty inherent in the system 

or the measurement device that generates the data. But 𝐗 is how we collect 

the data at what data points. Thus, many experimental design methods seek 

to optimize the structure of 𝐗. We can try different cases of the matrix 𝐗 to 

see the implication of this result.  

For example, let’s consider the following 𝐗: 
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𝐗 = [

1 0 0
0 1 0
0
1

0
1

1
1

]. 

It can be seen that, given this structure, the variance of �̂� takes a very 

special structure:  

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2𝑰. 

 

In other words, we can draw two main observations. First, the estimations 

of the regression parameters are independent, given that their correlations 

are zero. Second, the variances of the regression parameters are the same. 

From these two traits, this is an ideal structure for the data matrix 𝐗 that is 

commonly adopted for design of experiments when we have control over 

what data points we could collect. On the other hand, the data matrix 𝐗 most 

often takes an arbitrary structure that results in a general form for 𝑐𝑜𝑣(�̂�). 

Thus, estimations of the regression parameters are often correlated with each 

other. Adding or deleting variables from the regression model will result in 

changes of the estimations of other parameters, calling for cautions from us 

to interpret the regression models properly.  

Another interesting remark we’d like to point it out is that, in regression 

models, it is often the case that the interactions of the predictors could 

contribute extra prediction power. For example, to predict the yield of a 

chemical production process using the predictors, Temperature and Catalyst 

concentration, it is likely that we need to include the main effects of both 

predictors, but also their interactions. But, generally speaking, it is challenging 

in practice to recognize that there are important interaction terms to be 

included in the model. Thus, we need both contextual knowledge and 

meticulous craftwork of analytics to play with the data and interrogate the 

data.  

Here we provide an exemplary illustration of how to play with the data 

using EDA to discover interactions among variables. Thinking of the 

interaction between two variables, let’s say, 𝑋1 and 𝑋2, it essentially suggests 
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that the relationship between 𝑋1  (or 𝑋2 ) and the outcome 𝑌 depends on 

what value the other variable 𝑋2 (or 𝑋1) takes. Thus, this gives us an insight 

that, as we can use scatterplot to visualize the relationship between any 

variable with the outcome, we could see how this relationship changes 

according to another variable.  

 

 
Figure 2.7: Scatterplots of the continuous predictors versus outcome 

variable 

 

To implement this idea, first, let’s use the AD dataset, and draw the 

scatterplot of the predictors as shown in Figure 2.7.   

# Supplement the model with some visualization of the statistical
 patterns 
# Scatterplot matrix to visualize the relationship between outcom
e variable with continuous predictors 
library(ggplot2) 
# install.packages("GGally") 
library(GGally) 

# draw the scatterplots and also empirical shapes of the distribu
tions of the variables 
p <- ggpairs(AD[,c(16,1,3,4,5,6)], upper = list(continuous = "poi
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nts") 
             , lower = list(continuous = "cor") 
) 
print(p) 

For the other predictors which are binary, we can use boxplot, which is 

shown in Figure 2.8. 

# Boxplot to visualize the relationship between outcome variable 
with categorical predictors 
library(ggplot2) 
qplot(factor(PTGENDER), MMSCORE, data = AD,  
      geom=c("boxplot"), fill = factor(PTGENDER)) 

 
 

 
Figure 2.8: Boxplots of the binary predictors versus outcome variable 

 

 
Figure 2.9: Scatterplots of PTEDUCAT versus MMSE 



 

40 
 

 

Now, let’s pick up the scatterplot of MMSCORE versus PTEDUCAT, and see if 

the predictor, AGE, mediates the relationship between MMSCORE and PTEDUCAT. 

We then color the data points in the scatterplot while the color corresponds 

to the numerical scale of AGE. The following R codes generate Figures 2.9 and 

2.10.  

# How to detect interaction terms by exploratory data analysis (E
DA) 
require(ggplot2) 
p <- ggplot(AD_demo, aes(x = PTEDUCAT, y = MMSCORE)) 
p <- p + geom_point(aes(colour=AGE), size=2) 
# p <- p + geom_smooth(method = "auto") 
p <- p + labs(title="MMSE versus PTEDUCAT") 
print(p) 

It looks like that the relationship between MMSCORE and PTEDUCAT indeed 

changes according to different levels of AGE. Thus, we draw the same 

scatterplot on two levels of AGE, AGE < 60 and AGE > 80.  

p <- ggplot(AD_demo[which(AD_demo$AGE < 60),], aes(x = PTEDUCAT, 
y = MMSCORE)) 
p <- p + geom_point(size=2) 
p <- p + geom_smooth(method = lm) 
p <- p + labs(title="MMSE versus PTEDUCAT when AGE < 60") 
print(p) 

p <- ggplot(AD_demo[which(AD_demo$AGE > 80),], aes(x = PTEDUCAT, 
y = MMSCORE)) 
p <- p + geom_point(size=2) 
p <- p + geom_smooth(method = lm) 
p <- p + labs(title="MMSE versus PTEDUCAT when AGE > 80") 
print(p) 

Then, we can obtain Figure 2.10. 

Obviously, an interesting phenomenon emerges and shows that the 

relationship between MMSCORE and PTEDUCAT changes dramatically according 

to different levels of AGE! 

Thus, we further add this interaction term into the model that uses all the 

demographics variables: 

# fit the multiple linear regression model with an interaction te
rm: AGE*PTEDUCAT 
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lm.AD_demo2 <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT + AGE*PTEDU
CAT, data = AD_demo) 
summary(lm.AD_demo2) 

 

 
Figure 2.10: Scatterplots of PTEDUCAT versus MMSCORE when (left) AGE < 60  

or (right) AGE > 80 

 

Then, we can see that this interaction term is significantly contributing 

extra prediction power on top of the existing predictors (p-value is 0.01534)! 

##  
## Call: 
## lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + AGE * PTEDU
CAT,  
##     data = AD_demo) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.2571 -0.9204  0.5156  1.4219  4.2975  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  40.809411   5.500441   7.419 4.93e-13 *** 
## AGE          -0.202043   0.074087  -2.727  0.00661 **  
## PTGENDER     -0.470951   0.187143  -2.517  0.01216 *   
## PTEDUCAT     -0.642352   0.336212  -1.911  0.05662 .   
## AGE:PTEDUCAT  0.011083   0.004557   2.432  0.01534 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.052 on 512 degrees of freedom 
## Multiple R-squared:  0.07193,    Adjusted R-squared:  0.06468  
## F-statistic:  9.92 on 4 and 512 DF,  p-value: 9.748e-08 
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III. Tree Models 

III.1 Rationale and Formulation 

While the linear regression model is a typical data modeling method, the 

decision tree model represents a typical method in the category of algorithmic 

modeling as discussed in Table 1. The linear regression model formalizes the 

data generating mechanism, which emphasizes an understanding of the 

underlying system. In contrast, the decision tree mimics heuristics in human 

reasoning. An exemplary tree model is shown in Figure 2.11, which uses 

weather and day of week (Dow) (as two predictors) to predict whether to 

play basketball (as outcome variable). 

 

 
Figure 2.11: An exemplary decision tree model 

 

As shown in Figure 2.11, a decision tree contains of one root node 

(highlighted as yellow), inner nodes (highlighted as yellow), and decision 

nodes (highlighted as green). It also has splitting rules that are specified 

alongside the arcs. To predict on a data point, i.e., 𝒙𝑖, the root node is where 

to begin with. The data point will travel along the inner nodes according to 

the rules specified alongside the arcs. For example, considering the tree 

model in Figure 2.11. If 𝒙𝑖 = {Weather =  Sunny, Dow =  Yes}, then we 

can see that the data point will first go to inner node 1, and then, go to the 

left decision node and reach the decision that Play = Yes. If 𝒙𝑖 =
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{Weather ! =  Sunny,Dow =  Yes}, then we can see that the data point 

will go to the decision node right from the root node, and reach the decision 

that Play = No. 

 

Table 2.3: An exemplary dataset for building a decision tree 

ID Weather Dow (day-of-week) Play 

1 Rainy Saturday No 

2 Sunny Saturday Yes 

3 Windy Tuesday No 

4 Sunny Saturday Yes 

5 Sunny Monday No 

6 Windy Saturday No 

 

III.2 Theory/Method 

The decision tree shown in Figure 2.11 is created by domain knowledge. 

In what follows, we introduce how to create such a decision tree using data. 

As we can see from Figure 2.11, the key element of a decision tree is the 

splitting rules that can lead us through the inner nodes to the final decision 

node to reach a decision. A splitting rule is defined by a variable and the set 

of values it belongs to, e.g., Weather = Sunny. The variable used for splitting 

is referred as the splitting variable, and the corresponding value is refereed as 

the splitting value.  

Pretending that we don’t have the domain knowledge to create the tree 

model in Figure 2.11, let’s consider the dataset in Table 2.3 to build a decision 

tree. The dataset has 6 samples, while each sample was collected empirically 

by observing the decision of a basketball team.  

To build a decision tree model, we now face the first question, which is, 

in the root node, which variable should we use to define the first splitting 

rule. Possible splitting rules are {Weather = Rainy, Weather = Sunny, Dow 

= Saturday, Dow = Monday, Dow = Tuesday}. If we use the splitting rule, 

Weather = Sunny, it will result in the decision tree as shown in the left figure 

of Figure 2.12. If we use the splitting rule, Dow = Saturday, it will result in 



 

44 
 

the decision tree as shown in the right figure of Figure 2.12. Which one 

should we use? 

 

 
Figure 2.12: The decision tree models with Weather (left tree) or Dow 

(right tree) as the splitting variable in the root node 

 

As we can see from Figure 2.12, once there is a set of splitting rule 

candidates, one of them needs to be selected at a node for splitting. To help 

us decide on which splitting rule is the best, the concept of impurity of data 

has been developed.  

Impurity and information gain (IG): For classification problem (the 

outcome variable is categorical), the impurity of data points in a given node 

can be measured by entropy: 

𝑒 =  ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖𝑖=1,..,𝐾 . 

where 𝐾 represents the number of classes and 𝑃𝑖 is the proportion of data 

points in the node that belong to the class 𝑖. The entropy 𝑒 is defined as 0 

when the data points in the node all belong to one single class.  

It is easy to see that, a node that has a large impurity is not ready to be a 

decision node yet. Thus, if we want to further split the node and create two 

more child nodes under it, we look for the best splitting rules that can 

minimize the impurity of the children nodes. This reduction of impurity can 

then be measured by information gain (IG), which is the difference of the 

entropy of the splitting node and the average entropy of the two children 

nodes weighted by their number of data points. The IG is defined as: 

𝐼𝐺 = 𝑒𝑠 − ∑ 𝑤𝑖 ∗ 𝑒𝑖𝑖=1,..,𝑛 . 
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Here, 𝑒𝑠 is the entropy at the splitting node, 𝑒𝑖 is the entropy at the child 

node 𝑖, and  𝑤𝑖 is the number of data points in the children node 𝑖 divided 

by the number of data points at the splitting node1.  

To show how these concepts could be implemented, let’s look at the 

decision tree model in the left figure of Figure 2.12. The entropy of the root 

node is calculated as  

−
4

6
𝑙𝑜𝑔2

4

6
−
2

6
𝑙𝑜𝑔2

2

6
= 0.92. 

The entropy of the left child node (“Weather = Sunny”) is 

−
2

3
𝑙𝑜𝑔2

2

3
−
1

3
𝑙𝑜𝑔2

1

3
= 0.92. 

The entropy of the right child node (“Weather != Sunny”) is 0 since all 

the three data points (ID = 1,3,6) belong to the same class.   

The information gain for the splitting rule “Weather = Sunny” is then 

𝐼𝐺 = 0.92 − 
3

6
∗ 0.92 −

3

6
∗ 0 = 0.46. 

For the decision tree in the right figure of Figure 2.12, the entropy of the 

left child node (“Dow = Saturday”) is 

−
2

4
𝑙𝑜𝑔2

2

4
−
2

4
𝑙𝑜𝑔2

2

4
= 1. 

The entropy of the right child node (“Dow != Saturday”) is 0 since the 

two data points (ID = 3,5) belong to the same class.   

Thus, the information gain for the splitting rule “Dow = Saturday” is then 

𝐼𝐺 = 0.92 − 
3

6
∗ 1 −

3

6
∗ 0 = 0.42. 

As the information gain of “Weather = Sunny” is higher, the splitting rule 

“Weather = Sunny” is preferred over its competitor “Dow = Saturday”.  

                                                      

1 For regression problems, the variance of the outcome variable can be 

used for measuring the impurity of a node, i.e., 

𝑣 = ∑ (�̅� − 𝑦𝑛)
2𝑁

𝑛=1 , 

where 𝑦𝑛=1,…,𝑁 are the values of the outcome variable, and �̅� is the average 

of the outcome variable at the node. And the information gain can be 

calculated similarly to the classification problem.  
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Similarly, the information gain can be calculated for all other splitting rules. 

As “Weather = Sunny” has the maximum information gain, it is selected for 

splitting the root node. The left child node with data points (ID = 2,4,5) still 

has two classes, and can be further split by selecting the next best splitting 

rule. The right child node has only one class and becomes a decision node 

labeled with the decision “play = No”.   

Note that, in our example, we only have categorical variables, while 

splitting rules could be easily defined. For continuously variables, the values 

of a variable are firstly ordered, and then, the average of each pair of 

consecutive values is used as the splitting value.   

Greedy recursive approach to build a tree: Based on the concept of 

impurity and IG, we could develop a greedy strategy that recursively split the 

data points until there is no further IG, e.g., when there is only one data point, 

or only one class in the node. Most tree-building methods use this approach, 

with difference in the definitions of the impurity and IG. 

However, this will inevitably lead to a very large decision tree with many 

inner nodes and unstable decision nodes (i.e., since the decisions assigned to 

these nodes are inferred empirically based on very few data points). Thus, 

such a decision tree can be sensitive to noisy data, leading to worse accuracy 

and interpretability.  

Tree pruning: To mitigate this problem, the pre-pruning or post-pruning 

methods can be used to control the complexity of a decision trees. Pre-

pruning stops growing a tree when a pre-defined criterion is met. One can 

define the maximum depth of a tree, or minimum number of data points at 

each node. As these approaches are based on prior knowledge, they may not 

necessary reflect the data characteristics. More data-dependent approaches 

can be used. For example, the minimum impurity gain threshold can be used 

to stop growing a tree when the impurity gain is below the threshold. Still, a 

small impurity gain at a node does not necessarily indicate equivalent small 

impurity gain from its children nodes. Therefore, pre-pruning can cause over-

simplified and thus under-fitted tree models. In other words, it is too cautious.  
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Figure 2.13: An example for tree pruning using pessimistic error  

 

In contrast, post-pruning prunes a tree after it is fully-grown and has less 

risk of under-fit as a full-grown tree contains sufficient information captured 

from the data. Post-pruning starts from the bottom of the tree. If removing 

the sub-tree of an inner node does not increase the error, then the sub-tree 

under the inner node can be pruned. Note that, the error here is not the error 

calculated based on the training data that is used to train the tree. This error 

calculated based on training data is called as empirical error. Rather, here, 

we should use the generalization error1, that is, the error when applied to 

unseen data. Thus, in the famous decision tree algorithm, C4.5, the 

pessimistic error estimation approach is used.  

We can derive the pessimistic error estimation using binomial 

approximation. Denote the empirical error rate on the training data as �̂�, 

which is only an estimation of the generalization error 𝑒. Since each data 

point can be either correctly or wrongly classified, we can view the probability 

of being correctly classified as a binomial distribution with probability 𝑒. 

With this insight, the normal distribution approximation can be applied here 

to derive the confidence interval of the generalization error 𝑒 as: 

                                                      
1 We will return to this issue with more delicate discussion in Chapter 5. 
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�̂� − 𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
≤ 𝑒 ≤ �̂� + 𝑧𝛼 2⁄ √

�̂�(1−�̂�)

𝑛
. 

The upper bound of the interval, �̂� +  𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
, is used as the 

estimate of 𝑒. As this is an upper bound, it is named as pessimistic error 

estimation. Note that, the estimate of the error depends on three values, 𝛼, 

which is often set to be 0.25 so that 𝑧𝛼 2⁄ =1.15; �̂�, which is the training error; 

and 𝑛 , which is the number of data points at the node. Therefore, the 

estimated error is larger with a smaller 𝑛, accounting for the sample size as 

well.  

Considering the tree in Figure 2.13 as an example. Each decision node is 

labeled with a class (i.e., either C1 or C2). Besides each node, we also highlight 

the distribution of the two classes, the misclassified instances (𝑚), and the 

misclassified instances using the pessimistic error estimation (𝑚𝑝).  

 

 
Figure 2.14: The pruned tree of Figure 2.13 

 

 

Consider the inner node 1. We can see that, if we prune the subtree below 

inner node 1, we will label it with class C1, as 20 of the included data points 

are labeled as C1 while 19 are labeled as C2. And we can get that the total 

misclassified instances 𝑚 is 19. Thus, �̂� =
19

39
= 0.4871. For the pessimistic 

error estimation, we can get that 

�̂� +  𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
= 0.4871 + 1.15√

0.4871(1−0.4871)

39
= 0.579. 
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Thus, we can get that 𝑚𝑝 = 0.579 × 39 = 22.59.   

Now, let’s see if the splitting of this inner node into its two child nodes 

improves the pessimistic error. It can be seen that, with this subtree of the 

two child nodes, the total misclassified instances 𝑚  is 9+9=18. And by 

pessimistic error estimation, 𝑚𝑝 = 11.5 + 11.56 = 23.06 for the subtree. 

Therefore, based on the pessimistic error, we should prune the subtree. 

Now the pruned tree is shown in Figure 2.14. Now consider whether to 

prune the children nodes of the root node. The pessimistic misclassified 

instances at the root node is 22.92, and the total pessimistic misclassified 

instances from its children nodes is 22.59+0=22.59. Pruning the children 

node would lead to increased error, and thus, the children nodes are kept and 

the final tree consists of three nodes.  

Both pre-pruning and post-pruning are useful in practices, and it is hard 

to say which one is better than another. There are tendencies though, i.e., the 

post-pruning can often outperform pre-pruning. But, when there are 

sufficient data, one can generate a number of values for a pre-pruning 

parameter, and cross-validation can be used to determine the best value to 

minimize the estimation error.  In this case, an appropriately selected pre-

pruning parameter may also perform well. For example, in the “rpart” R 

package, the complexity parameter (cp) is used. Using the parameter, all splits 

need to improve the impurity score, e.g., information gain, by at least a factor 

of cp, that is, splits do not decrease the impurity score by cp will not be 

pursued. This strategy also works well in many applications.   

 

III.3 R Lab 

Now let’s use the AD dataset for illustrating how the decision tree model 

can be used. Here, we use DX_bl as the outcome variable that is binary (“0” 

denotes for normal subjects while “1” denotes for diseased subjects), and use 

other variables (except ID, TOTAL13 and MMSCORE) to predict DX_bl.  

The R code in below loads the needed R packages and loads the data into 

the workspace.  

library(rpart) 
library(rpart.plot) 
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library(dplyr) 
library(tidyr) 
library(ggplot2) 
library(partykit) 
theme_set(theme_gray(base_size = 15)) 
 
path <- "../analytics/data/ AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 

 

 

Figure 2.15: The unpruned decision tree to predict DX_bl  

 

The rpart() function in the R package “rpart” can be used to build the 

decision tree using the data and plot the decision tree in Figure 2.15. 

tree <- rpart(DX_bl ~ ., data) 
prp(tree, nn.cex = 1) 
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As an associated function with the “rpart” package, the importance score 

for each variable can be obtained from the tree. HippoNV has the largest 

importance score among all the variables. 

print(tree$variable.importance) 

##     HippoNV         FDG        AV45         AGE    PTGENDER   
     e4_1  
## 116.6665538  89.5608444  39.9595988  28.2195180  12.2040648   
6.4708596  
##   rs3851179    PTEDUCAT   rs3818361  
##   4.2352941   1.1552265   0.8663915 

The tree can be further pruned with the prune function whereas the 

parameter cp controls the model complexity. cp is the minimum relative error 

improved by splitting the node. A larger cp leads to a less-complex tree. First, 

let we try cp = 0.05 which leads to Figure 2.16. 

tree_0.05 <- prune(tree, cp = 0.05) 
prp(tree_0.05, nn.cex = 1) 

We can see that the tree is pruned. Then, we increase cp to 0.1 which 

leads to Figure 2.17. 

tree_0.1 <- prune(tree, cp = 0.1) 
prp(tree_0.1, nn.cex = 1) 

 

 

Figure 2.16: The pruned decision tree model to predict DX_bl of the 

AD data with cp = 0.05 
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Figure 2.17: The pruned decision tree model to predict DX_bl of the 

AD data with cp = 0.1 

 

We can see that, with cp = 0.1, the tree only has two nodes.  

Now we have seen that the parameter cp could be used to control the 

model complexity in pruning. In practices, cp can be decided by minimizing 

the cross-validation error. The cross-validation will be introduced in detail in 

Chapter 5. Here, we take this opportunity to present it so we could get a sense 

of what it does. First, we split the data into halves, one half for training the 

tree model while another half for testing its accuracy. We then build a series 

of tree models using the training data with cp values ranging from 0.2 to 0. 

For each built tree model, a training error and testing error can be calculated 

using the two datasets, respectively. For each tree, the number of decision 

nodes is recorded and used for measuring the complexity of the tree. 

set.seed(1) 
train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
err.train.v <- NULL 
err.test.v <- NULL 
leaf.v <- NULL 
for (i in seq(0.2, 0, by = -0.005)) { 
    tree <- rpart(DX_bl ~ ., data = data[train.ix, ], cp = i) 
    pred.train <- predict(tree, data[train.ix, ], type = "class") 
    pred.test <- predict(tree, data[-train.ix, ], type = "class") 
    current.err.train <- length(which(pred.train != data[train.i
x, ]$DX_bl))/length(pred.train) 
    current.err.test <- length(which(pred.test != data[-train.ix,
 ]$DX_bl))/length(pred.test) 
    err.train.v <- c(err.train.v, current.err.train) 
    err.test.v <- c(err.test.v, current.err.test) 
    leaf.v <- c(leaf.v, length(which(tree$frame$var == "<leaf>
"))) 
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} 
err.mat <- as.data.frame(cbind(train_err = err.train.v, test_err 
= err.test.v,  
    leaf_num = leaf.v)) 
err.mat$leaf_num <- as.factor(err.mat$leaf_num) 
err.mat <- unique(err.mat) 
err.mat <- err.mat %>% gather(type, error, train_err, test_err) 

data.plot <- err.mat %>% mutate(type = factor(type)) 
ggplot(data.plot, aes(x = leaf_num, y = error, shape = type, colo
r = type)) +  
    geom_line() + geom_point(size = 3) 

The training errors and testing errors of the trees at different number of 

decision nodes are plotted in Figure 2.18. It can be seen that, as the 

complexity of trees increases, the training errors continue to decrease, while 

the testing errors first decrease but increase at some point. This indicates that, 

there is an optimal tree size that can be identified by testing error but will be 

missed by training error.  This is actually the danger of aggressively pursuing 

models that can achieve too-good-to-be-true performances on training data, 

a commonly known phenomenon as overfitting.  

 

 

Figure 2.18: Training and testing errors versus complexity of the tree 

model (i.e., measured by the number of decision nodes in the tree) 
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Figure 2.19: Regression tree using three variables to predict MMSCORE 

 

We have been focused on classification problems so far, now let's also try 

rpart for the same regression problem illustrated in the linear regression R 

lab. Firstly, AGE, PTGENDER and PTEDUCAT are used as the predictor variables. 

The tree is plotted in Figure 2.19. The prediction of MMSCORE (a numeric value) 

is labeled at each leaf node. In the linear model part, it has been shown that 

the relationship between MMSCORE and PTEDUCAT changes substantially 

according to different levels of AGE. The decision tree is able to capture the 

interaction between PTEDUCAT, AGE and MMSCORE. 

AD <- read.csv(text = getURL("https://raw.githubusercontent.com/s
huailab/ind_498/master/resource/data/AD2.csv")) 
AD_demo <- subset(AD, select = c("MMSCORE", "AGE", "PTGENDER", "P
TEDUCAT")) 
tree <- rpart(MMSCORE ~ ., AD_demo, method = "anova")=TRUE) 
prp(tree, nn.cex = 1) 
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Figure 2.20: Regression tree using all variables to predict MMSCORE 

 

Now let's build a decision tree with all predictor variables. The regression 

tree is plotted in Figure 2.20. It can be seen that more interactions are 

captured. The tree can also provide insight for feature engineering in a linear 

modeling context, e.g., now we can add these interactions, such as FDG and 

HippoNV, HippoNV and AGE, as new features to the linear regression model and 

evaluate the incremental accuracy gain. However, it should be noted that the 

interactions useful in a decision tree may not be optimal for a linear model 

given the models are built with different evaluation criteria. 

AD_full <- AD[, c(1:16)] 
tree <- rpart(MMSCORE ~ ., AD_full, method = "anova") 
prp(tree, nn.cex = 1) 
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III.4 Remarks 

At each node of a decision tree, split is based on one single variable, and 

therefore, if the variable is continuous, the classification boundary for that 

split is perpendicular to the variable. And overall the classification boundary 

from a decision tree is always parallel or perpendicular to a continuous 

variable. This is illustrated in the following graph. The classification boundary 

consisting of splits by 𝑋1 and 𝑋2 is either parallel or perpendicular to one axis.  

 

 

Figure 2.21: Decision boundary captured by tree models 

 

This implies that, when applying a decision tree to a dataset with linear 

relationship between predictors and outcome variables, it may not be an 

optimal choice. In the following example, we simulate a data set and apply a 

decision tree and a logistics regression model (the counterpart of linear 

regression model for classification problem that will be introduced in Chapter 

3) to the data, respectively. The training data, and the predicted classes for 

each data point from the logistic regression and decision models are shown 

in Figures 2.22, 2.23 and 2.24, respectively. It can be seen the classification 

boundary from the logistics regression model is linear, while the one from 

the decision tree is parallel to the axis. This limitation makes a decision tree 

not be able to fully capture the linear relationship in the data.  

 

ndata <- 2000 
X1 <- runif(ndata, min = 0, max = 1) 
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X2 <- runif(ndata, min = 0, max = 1) 
data <- data.frame(X1,X2) 
data <- data %>% mutate( X12 = 0.5 * (X1 - X2), Y = ifelse(X12>=
0,1,0)  ) 
ix <- which( abs(data$X12) <= 0.05 ) 
data$Y[ix] <- ifelse(runif( length(ix)) < 0.5, 0, 1) 
data <- data  %>% select(-X12) %>%  mutate( Y = as.factor(as.char
acter(Y) )) 
ggplot(data,aes(x=X1,y=X2,color=Y))+geom_point() 

linear_model <- glm(Y ~ ., family = binomial(link = "logit"), dat
a = data) 
tree_model <- rpart( Y ~ ., data = data)   
pred_linear <- predict(linear_model, data,type="response") 
pred_tree <- predict(tree_model, data,type="prob")[,1] 
data_pred <- data %>% mutate( pred_linear_class = ifelse( pred_li
near <0.5,0,1)  ) %>%  
          mutate( pred_linear_class = as.factor(as.character(pred
_linear_class) )) %>% 
          mutate( pred_tree_class = ifelse( pred_tree <0.5,0,1) 
 ) %>%  
          mutate( pred_tree_class = as.factor(as.character(pred_t
ree_class) ))  
ggplot(data_pred,aes(x=X1,y=X2,color=pred_linear_class))+geom_poi
nt() 

ggplot(data_pred,aes(x=X1,y=X2,color=pred_tree_class))+geom_point
() 

                       

Figure 2.22: Scatterplot of the generated dataset 
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Figure 2.23: Decision boundary captured by logistic regression model 

 

Figure 2.24: Decision boundary captured by the tree model 

 

IV. Exercises 

Data analysis 

1. Repeat the analysis shown in the R lab of this chapter, but use 

TOTAL13 as the outcome variable. Please build both the regression 

model and the decision tree model (for regression). Identify the final 

models you would select, evaluate the models, and compare the 

regression model with the tree model.   
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2. Find two datasets from the UCI data repository1 or R datasets2. 

Conduct a detailed regression analysis for both datasets using both 

regression model and the tree model (for regression), e.g., for 

regression model, you may want to conduct model selection, model 

comparison, testing of the significance of the regression parameters, 

evaluation of the R-squared and significance of the model. Also 

comment on the application of your model on the context of the 

dataset you have selected.  

3. Pick up any dataset you have used, and randomly split the data into 

two halves. Use one half to build the tree model and the regression 

model. Test the models’ prediction performances on the second half. 

Report what you have found, adjust your way of model building, and 

suggest a strategy to find the model you consider as the best.   

 

Derivation 

4. Consider the case that, in building linear regression models, there is 

a concern that some data points may be more important (or more 

trustable). Thus, it is not uncommon to assign a weight to each data 

point. Denote the weight for the ith data point as 𝑤𝑖. We still want 

to estimate the regression parameters in the least squares framework. 

Follow the process of the derivation of the least squares estimator 

and propose your new estimator of the regression parameters. 

5. Build a decision tree model based on the following dataset. Don’t 

use R. Use your pen and paper, and show the process. 

 

Table 2.4: dataset for building a decision tree 

ID X1 X2 Y 

1 0.22 0.38 No 

2 0.58 0.32 Yes 

                                                      
1 http://archive.ics.uci.edu/ml/index.php 
2 https://vincentarelbundock.github.io/Rdatasets/datasets.html 
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3 0.57 0.28 Yes 

4 0.41 0.43 Yes 

5 0.6 0.29 No 

6 0.12 0.32 Yes 

7 0.25 0.32 Yes 

8 0.32 0.38 No 

 

 

Programming  

6. Write your own R script to implement the least squares estimation 

of a regression model. Compare the output from your script with the 

output from lm(). 

7. As a continuation of 1, also write your own R script to derive the p-

value of your regression parameters. Compare the output from your 

script with the output from lm(). 

8. Write your own R script to build a decision tree using the greedy 

recursive process mentioned in this chapter, using the information 

gain. By your script, the tree growth process stops when a given 

depth of the tree is reached.  

 



 

Analytics of Small Data 

61 
 

 

 

 

 

 

CHAPTER 3: RECOGNITION  
LOGISTIC  REGRESSION AND 

RANKING  
 

 

 

 

 

I. Overview 

Chapter 3 is about “Recognition”. This is a very important capability in 

real-world practices of analytics. It is a capability to recognize the same 

“abstracted” analytic problem embedded in seemly different real-world 

problems. This is not to say that all the real-world problems can be reduced 

to one single abstracted problem. A real-world problem usually contains 

multiple perspectives and layers, presenting itself as a combination or 

composition of multiple abstracted problems. Being able to recognize these 

abstracted problems holds the key to solve these real-world problems 

effectively. After all, to solve a real-world problem, at a certain point or a 

certain level, you have to bring the problem or part of the problem or a 

certain aspect of the problem into the territory of a classic analytic problem, 

because only in those classic territories we know we can solve problems for 

sure.   
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II. Logistic Regression Model  

II.1 Rationale and Formulation 

Linear regression model is introduced as a tool to predict a continuous 

response (or called outcome) variable 𝑦 using a few input variables 𝒙. In 

some applications, the response is a binary variable that denotes two classes. 

For example, in the AD dataset, we may wonder if we could use some 

variables to predict if the subject is a normal person or diseased.  

We have learned about linear regression model to connect some input 

variables with the outcome variable. It is natural to wonder if and how the 

linear regression framework could still be useful here. Specifically, here, the 

input variables are still 𝒙, but the outcome is not simply 𝑦. Rather, we may 

be more interested to predict probability 𝑃𝑟(𝑦 = 1). Thus, we want to create 

probability by a function 𝑝(𝒙) such that 𝑃𝑟(𝑦 = 1) = 𝑝(𝒙). Following the 

mentality of linear regression, we somehow envision that the linear form, 

𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 , should be used here as a constitutional component to define 

𝑝(𝒙). It is hard to directly link 𝑝(𝒙) = 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1  though, since 𝑝(𝑥) 

as a probability has to be in the range of [0,1] but 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1  has no 

limitation in the range. If we look closer into the idea of using a linear form 

to encode the predictive information in 𝒙, we may realize that the linear form 

is very useful in ranking the possibilities rather than directly being eligible 

probabilities. In other words, a linear form is advantageous to make a 

comparison of two inputs, say, 𝒙𝑖 and 𝒙𝑗, and evaluates which one leads to a 

higher probability of 𝑃𝑟(𝑦 = 1). Thus, we don’t have to let 𝑝(𝒙) = 𝛽0 +

∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 , but only need 𝑝(𝒙) ∝ 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 . 

To fix this problem, statisticians soon found that it is better to link these 

two entities as: 

log
𝑝(𝒙)

1−𝑝(𝒙)
= 𝛽0 +∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 . 

This is the so-called logistic regression model. The name stems from the 

transformation of 𝑝(𝒙) used here, i.e., the log
𝑝(𝒙)

1−𝑝(𝒙)
, which is the logistic 
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transformation that has been widely used in many areas such as physics and 

signal processing.  

The logistic regression model can be further transformed: 

𝑝(𝒙) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1

)
. 

Based on this, we could predict 𝑦 = 1  if 𝑝(𝒙) ≥ 0.5 , and 𝑦 = 0  if 

𝑝(𝒙) < 0.5.  

As the thought process revealed above, logistic regression model is not 

the only eligible model for doing classification using linear form of the input 

variables. This is just one of the possibilities motivated by the linkage we can 

establish between 𝑝(𝒙)  and 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1  by log

𝑝(𝒙)

1−𝑝(𝒙)
. Later we will 

learn more such models such as the Support Vector Machine (SVM) that still 

keep the linear form but follow different linkage functions. It is very 

important to know that this is a choice made by us, rather than a reality 

imposed on us nor a mathematical necessity that we have to accept. 

 

II.2 Theory/Method 

Now we show how to estimate the regression parameters in a logistic 

regression model.  

The likelihood function is: 

𝐿(𝜷) = ∏ 𝑝(𝒙𝑛)
𝑦𝑛(1 − 𝑝(𝒙𝑛))

1−𝑦𝑛𝑁
𝑛=1 . 

We use the log-likelihood to turn products into sums: 

𝑙(𝜷) = ∑ {𝑦𝑛 log 𝑝(𝒙𝑛) + (1 − 𝑦𝑛) log(1 − 𝑝(𝒙𝑛))}
𝑁
𝑛=1 . 

This could be further transformed into 

𝑙(𝜷) = ∑ − log (1 + 𝑒𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1 )𝑁

𝑛=1 − ∑ 𝑦𝑛(𝛽0 + ∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1 )𝑁

𝑛=1 , 

since  

∑ {𝑦𝑛 log 𝑝(𝒙𝑛) + (1 − 𝑦𝑛) log(1 − 𝑝(𝒙𝑛))}
𝑁
𝑛=1 , 

= ∑ log(1 − 𝑝(𝒙𝑛))
𝑁
𝑛=1 −∑ 𝑦𝑛 log

𝑝(𝒙𝑛)

1−𝑝(𝒙𝑛)
𝑁
𝑛=1 , 

= ∑ − log (1 + 𝑒𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1 )𝑁

𝑛=1 − ∑ 𝑦𝑛(𝛽0 +∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1 )𝑁

𝑛=1 . 
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The Newton-Raphson algorithm is commonly used to optimize the log-

likelihood function of the logistic regression model to identify the optimal 

regression parameters. The Newton-Raphson algorithm is an iterative 

algorithm that seeks updates of the current solution using the following 

formula: 

𝜷𝑛𝑒𝑤 = 𝜷𝑜𝑙𝑑 − (
𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
)
−1

𝜕𝑙(𝜷)

𝜕𝜷
. 

Here, 𝜷 is the column vector form of the regression parameters.  

We can show that  

𝜕𝑙(𝜷)

𝜕𝜷
= ∑ 𝒙𝑛(𝑦𝑛 − 𝑝(𝒙𝑛))

𝑁
𝑛=1 , 

𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
= −∑ 𝒙𝑛𝒙𝑛

𝑇𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛))
𝑁
𝑛=1 . 

A certain structure can then be revealed if we rewrite it in matrix form: 

𝜕𝑙(𝜷)

𝜕𝜷
= 𝐗𝑇(𝒚 − 𝒑), 

𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
= −𝐗𝑇𝐖𝐗. 

where 𝐗 is the 𝑁 × (𝑝 + 1) input matrix, 𝒚 is the 𝑁 × 1 column vector of 

𝑦𝑖 , 𝒑 is the 𝑁 × 1  column vector of 𝑝(𝒙𝑛), and 𝐖 is a 𝑁 × 𝑁  diagonal 

matrix of weights with the nth diagonal element as 𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛)). 

Then, plugging this into the updating formula of the Newton-Raphson 

algorithm, we can derive that 

𝜷𝑛𝑒𝑤 = 𝜷𝑜𝑙𝑑 + (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖(𝒚− 𝒑), 

= (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖(𝐗𝜷𝑜𝑙𝑑 +𝐖−1(𝒚 − 𝒑)), 

= (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒛, 

where 𝐳 = 𝐗𝜷𝑜𝑙𝑑 +𝐖−1(𝒚 − 𝒑).   

This resembles the generalized least squares (GLS) estimator of a 

regression model, where each data point (𝒙𝑛, 𝑦𝑛) is associated with a weight 

𝑤𝑛 to reduce the influence of potential outliers in fitting the regression model. 

This insight revealed by the Newton-Raphson algorithm suggests a new 

perspective to look at the logistic regression model. The updating formula 

suggests that we are actually solving a weighted regression model as: 
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𝜷𝑛𝑒𝑤 ⟵ argmin
𝜷
(𝒛 − 𝐗𝜷)𝑇𝐖(𝒛 − 𝐗𝜷). 

For this reason, this algorithm is also called the Iteratively Reweighted 

Least Square or IRLS algorithm. 𝒛 is referred as the adjusted response. 

Putting all these together, a complete flow of the IRLS is shown in below: 

1. Initialize 𝜷. 

2. Compute 𝒑 by its definition:  𝑝(𝒙𝑛) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖

𝑝
𝑖=1

)
 for 𝑛 =

1,2,… ,𝑁. 

3.  Compute the diagonal matrix 𝐖, while the nth diagonal element as 

𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛)) for 𝑛 = 1,2,… ,𝑁. 

4. Set 𝒛 as = 𝐗𝜷 +𝐖−1(𝒚 − 𝒑). 

5. Set 𝜷 as (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒛. 

6. If the stopping criteria is met, stop; otherwise go back to step 2. 

 

 

II.3 R Lab 

Focusing on the AD dataset, now let’s predict the diagnosis of the 

subjects either as normal or diseased. The variable, DX_bl, encodes the 

diagnosis information, i.e., “0” denotes normal while “1” denotes diseased.  

#### Dataset of Alzheimer's Disease  
#### Objective: prediction of diagnosis  
# filename 
AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 

First, let’s examine a simple logistic regression model using the function 

glm() with only one predictor, FDG. 

# Fit a logistic regression model with FDG  
logit.AD <- glm(DX_bl ~ FDG, data = AD, family = "binomial") 
summary(logit.AD) 

##  
## Call: 
## glm(formula = DX_bl ~ FDG, family = "binomial", data = AD) 
##  
## Deviance Residuals:  
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##     Min       1Q   Median       3Q      Max   
## -2.4686  -0.8166  -0.2758   0.7679   2.7812   
##  
## Coefficients: 
##             Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  18.3300     1.7676   10.37   <2e-16 *** 
## FDG          -2.9370     0.2798  -10.50   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 711.27  on 516  degrees of freedom 
## Residual deviance: 499.00  on 515  degrees of freedom 
## AIC: 503 
##  
## Number of Fisher Scoring iterations: 5 

It can be seen from the summary of the built model that the predictor FDG 

is significant, as the p-value is <2e-16 that is far less than 0.05. Although it 

is not as straightforward as in linear regression model that we could derive 

the metric R-squared to examine how much proportion of the variability of 

the outcome variable could be explained away by the predictor, here, we 

could observe that, out of the total deviance of 711.27, 711.27– 499.00 = 

212.27 could be explained by the predictor FDG.  

We could then query what is the 95% CI of the regression parameter:  

## CIs of the regression parameters using profiled log-likelihood 
confint(logit.AD) 

##                 2.5 %    97.5 % 
## (Intercept) 15.033585 21.974091 
## FDG         -3.513878 -2.415248 

It is worthy of mentioning that, the wald.test() that builds on the Chi-

squared test, is also another method that is often used in testing the 

significance of the regression parameters in logistic regression model. The 

results by the wald.test() is usually in compliance with the approximated t-

test results as shown in the summary() function as we have seen above. 

## wald test for the regression coefficients 
library(aod) 
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## Warning: package 'aod' was built under R version 3.3.3 

wald.test(b = coef(logit.AD), Sigma = vcov(logit.AD), Terms = 2) 

For instance, we can see that, by setting “Terms = 2”, the Chi-squared 

test used in the wald.test() shows significance of the predictor FDG in 

predicting DX_bl.  

## Wald test: 
## ---------- 
##  
## Chi-squared test: 
## X2 = 110.2, df = 1, P(> X2) = 0.0 

With a built model, it is of interest to see how it can be used to predict on 

a given dataset. Here, for presentational purpose, we randomly pick up 200 

samples from the AD dataset to form the AD.pred, our imagined dataset to 

be predicted by the model.   

# To predict on a given dataset 
AD.pred <- AD[sample(1:dim(AD)[1], 200),] 
# predict() uses all the temp values in dataset, including append
ed values 
pred <- predict(logit.AD, AD.pred, type = "link", se.fit = TRUE) 
AD.pred$fit    <- pred$fit 
AD.pred$se.fit <- pred$se.fit 

We can readily convert these information into the 95% CIs of the 

predictions (the way these 95% CIs are derived are again, only in 

approximated sense).  

# CI for fitted values 
AD.pred <- within(AD.pred, { 
  # added "fitted" to make predictions at appended temp values 
  fitted    = exp(fit) / (1 + exp(fit)) 
  fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * s
e.fit)) 
  fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * s
e.fit)) 
}) 

We can draw the following figure to visualize the prediction. 

# visualize the prediction 
library(ggplot2) 
newData <- AD.pred[order(AD.pred$FDG),] 
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p <- ggplot(newData, aes(x = FDG, y = DX_bl)) 
# predicted curve and point-wise 95% CI 
p <- p + geom_ribbon(aes(x = FDG, ymin = fit.lower, ymax = fit.up
per), alpha = 0.2) 
p <- p + geom_line(aes(x = FDG, y = fitted), colour="red") 
# fitted values 
p <- p + geom_point(aes(y = fitted), size=2, colour="red") 
# observed values 
p <- p + geom_point(size = 2) 
p <- p + ylab("Probability") 
p <- p + labs(title = "Observed and predicted probability of dise
ase") 
print(p) 

 

Figure 3.1: Predicted probabilities (with their 95% CIs) versus observed 

outcomes 

 

The figure is shown in Figure 3.1. It can be seen that, the model prediction 

is significant and captures the relationship between FDG with DX_bl with a 

smooth logit curve, and the prediction confidences are fairly small (evidenced 

by the tight 95% CIs).  

On the other hand, from Figure 3.1, we can also see that, while the single-

predictor model is significant and does well on the two extreme ends of the 

probability range, in the middle part its prediction power is limited, calling 

for more predictors to enhance its prediction power. Thus, in the next step, 

we decide to add more variables to the logistic regression model. Before we 

build the model, it is of interest to visualize the relationships between the 
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predictors with the outcome variable. For example, in the following we show 

how the continuous variables could be presented in Boxplot form to see if 

the distribution of the continuous variable is different across the two classes 

of samples. 

 

 

Figure 3.2: Boxplots of the continuous predictors in the two classes 

 

# install.packages("reshape2") 
require(reshape2) 

AD.long <- melt(AD[,c(1,2,4,5,6,7,19)], id.vars = c("ID", "DX_bl
")) 
# Plot the data using ggplot 
require(ggplot2) 
p <- ggplot(AD.long, aes(x = factor(DX_bl), y = value)) 
# boxplot, size=.75 to stand out behind CI 
p <- p + geom_boxplot(size = 0.75, alpha = 0.5) 
# points for observed data 
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0), 
alpha = 0.1) 
# diamond at mean for each group 
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, s
ize = 6, 
                      alpha = 0.75, colour = "red") 
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# confidence limits based on normal distribution 
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorb
ar", 
                      width = .2, alpha = 0.8) 
p <- p + facet_wrap( ~ variable, scales = "free_y", ncol = 3) 
p <- p + labs(title = "Boxplots of variables by diagnosis (0 - no
rmal; 1 - patient)") 
print(p) 

This code will generate Figure 3.2 which shows that some variables, such 

as FDG and HippoNV, could separate the two classes significantly. Some 

variables such as AV45 and AGE have less prediction power, but still look 

promising. It is important to recognize that these figures only show marginal 

relationship among variables. Thus, while it is helpful, it is also important to 

keep in mind its limitations such as the inability to show synergistic effects 

among the variables.   

Just like in the linear regression model, we could use the function step() 

to automatically select the best model given a set of variables.  

# Automatic selection of the model 
logit.AD.full <- glm(DX_bl ~ ., data = AD[,c(1:16)], family = "bi
nomial") 
logit.AD.final <- step(logit.AD.full, direction="both", trace = 
0) 
summary(logit.AD.final) 

##  
## Call: 
## glm(formula = DX_bl ~ AGE + PTEDUCAT + FDG + AV45 + HippoNV +  
##     rs3818361 + rs610932 + rs3851179, family = "binomial", dat
a = AD[,  
##     c(1:16)]) 
##  
## Deviance Residuals:  
##     Min       1Q   Median       3Q      Max   
## -2.6385  -0.5022  -0.1146   0.3651   3.0694   
##  
## Coefficients: 
##              Estimate Std. Error z value Pr(>|z|)     
## (Intercept)  31.17834    3.76132   8.289  < 2e-16 *** 
## AGE          -0.03128    0.02134  -1.466   0.1427     
## PTEDUCAT     -0.12833    0.05087  -2.523   0.0116 *   
## FDG          -2.73262    0.33499  -8.157 3.43e-16 *** 
## AV45          1.58053    0.72007   2.195   0.0282 *   
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## HippoNV     -24.42793    2.74972  -8.884  < 2e-16 *** 
## rs3818361    -0.43672    0.28703  -1.522   0.1281     
## rs610932      0.47909    0.28390   1.688   0.0915 .   
## rs3851179    -0.48461    0.27440  -1.766   0.0774 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for binomial family taken to be 1) 
##  
##     Null deviance: 711.27  on 516  degrees of freedom 
## Residual deviance: 344.47  on 508  degrees of freedom 
## AIC: 362.47 
##  
## Number of Fisher Scoring iterations: 6 

The final model selected by the backward-forward selection procedure 

implemented in the step() function is shown in below, which includes 8 

predictors and one intercept. You may have noticed that some variables 

included in this model are actually not significant by the approximated t-test.  

The model as a whole could be evaluated by the Chi-square test against 

the null hypothesis that there is a lack of fit. And it can be seen that the model 

shows no lack of fit as the p-value is 1. 

# Test residual deviance for lack-of-fit (if > 0.10, little-to-no
 lack-of-fit) 
dev.p.val <- 1 - pchisq(logit.AD.final$deviance, logit.AD.final$d
f.residual) 
dev.p.val 

## [1] 1 

Again, we can derive the 95% CIs of the regression coefficients: 

# coefficients and 95% CI 
cbind(coef = coef(logit.AD.final), confint(logit.AD.final)) 

And we can observe that: 

##                     coef        2.5 %       97.5 % 
## (Intercept)  31.17834039  24.15644635  38.94011124 
## AGE          -0.03127754  -0.07367180   0.01022977 
## PTEDUCAT     -0.12833007  -0.23028570  -0.03019323 
## FDG          -2.73262447  -3.42455191  -2.10810353 
## AV45          1.58052749   0.17699902   3.00488253 
## HippoNV     -24.42793042 -30.12412328 -19.31065470 
## rs3818361    -0.43672386  -1.00682550   0.12136335 
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## rs610932      0.47909019  -0.07263237   1.04320233 
## rs3851179    -0.48460576  -1.02757559   0.05088704 

Regarding the regression coefficients of logistic regression model, it is also 

of interest to convert them into odds ratios for another interpretation. This 

could be done by directly calling upon the definition of the odds ratio, as 

done in the codes shown in below:  

## odds ratios and 95% CI 
exp(cbind(OR = coef(logit.AD.final), confint(logit.AD.final))) 

Then, we can derive the odds ratios and their 95% CIs. 

##                       OR        2.5 %       97.5 % 
## (Intercept) 3.472012e+13 3.097500e+10 8.155967e+16 
## AGE         9.692065e-01 9.289765e-01 1.010282e+00 
## PTEDUCAT    8.795630e-01 7.943066e-01 9.702580e-01 
## FDG         6.504835e-02 3.256387e-02 1.214681e-01 
## AV45        4.857517e+00 1.193630e+00 2.018384e+01 
## HippoNV     2.460847e-11 8.265316e-14 4.106664e-09 
## rs3818361   6.461498e-01 3.653770e-01 1.129035e+00 
## rs610932    1.614605e+00 9.299426e-01 2.838292e+00 
## rs3851179   6.159400e-01 3.578735e-01 1.052204e+00 

Besides these significant tests and presentations of the model parameters, 

we can also look at the predictions of the model on the samples. We can use 

the function, fitted(), to derive the probabilities of diseased given by the 

model for the samples. Then, we could visualize the predictions using the 

boxplots: 

# visualize the correlation 
tempData = cbind(Yhat,AD$DX_bl) 
require(ggplot2) 
qplot(factor(AD$DX_bl), Yhat, data = AD,  
      geom=c("boxplot"), fill = factor(AD$DX_bl),title="Predictio
n versus Observed") 

The result is shown in Figure 3.3, which indicates that the model can 

separate the two classes significantly.  
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Figure 3.3: Boxplots of the predicted probabilities of diseased in the 

two classes 

 

II.4 Remarks 

Another perspective to look into the origin of logistic regression model is 

motivated by an empirical observation. Here, let’s use the AD dataset, and 

pick up the variables, HippoNV and DX_bl, to see empirically what is the shape 

the relationship between the two takes. Specifically, here, we categorize the 

continuous variable HippoNV into distinct levels, and observe what is the 

prevalence of AD incidences within each level. The following R code serves 

this data processing purpose. 

# Create the frequency table in accordance of categorization of H
ippoNV 
temp = quantile(AD$HippoNV,seq(from = 0.05, to = 0.95, by = 0.0
5)) 
AD$HippoNV.category <- cut(AD$HippoNV, breaks=c(-Inf, temp, Inf)) 
tempData <- data.frame(xtabs(~DX_bl + HippoNV.category, data = A
D)) 
tempData <- tempData[seq(from = 2, to = 2*length(unique(AD$HippoN
V.category)), by = 2),] 
summary(xtabs(~DX_bl + HippoNV.category, data = AD)) 

tempData$Total <- colSums(as.matrix(xtabs(~DX_bl + HippoNV.catego
ry, data = AD))) 
tempData$p.hat <- 1 - tempData$Freq/tempData$Total 
tempData$HippoNV.category = as.numeric(tempData$HippoNV.category) 
str(tempData) 
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We can use the str(tempData) to visualize the data we have converted, 

where 20 levels of HippoNV has been created; “Total” denotes the total 

number of subjects within each level, and “p.hat” denotes the proportion of 

the diseased subjects within each level (the prevalence). 

str(tempData) 

## 'data.frame':    20 obs. of  5 variables: 
##  $ DX_bl           : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2
 2 2 2 ... 
##  $ HippoNV.category: num  1 2 3 4 5 6 7 8 9 10 ... 
##  $ Freq            : int  24 25 25 21 22 15 17 17 19 11 ... 
##  $ Total           : num  26 26 26 26 26 25 26 26 26 34 ... 
##  $ p.hat           : num  0.0769 0.0385 0.0385 0.1923 0.1538
 ... 

We are now ready to further visualize the relationship between the two 

variables by drawing a scatterplot, as shown in Figure 3.4. We also use the 

“loess” method, which is a nonparametric smoothing method, to fit the 

relationship, which clearly shows a logit type functional shape of the 

relationship. This provides an empirical justification of the use of the logic 

transformation log
𝑝(𝒙)

1−𝑝(𝒙)
, to 𝑝(𝒙) and 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 , which gives birth to 

the logistic regression model.   

 

 
Figure 3.4: The empirical relationship between HippoNV and DX_bl takes a 

shape as the logit function 
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# Draw the scatterplot of HippoNV.category versus the probability
 of normal 
library(ggplot2) 

p <- ggplot(tempData, aes(x = HippoNV.category, y = p.hat)) 
p <- p + geom_point(size=3) 
p <- p + geom_smooth(method = "loess") 
p <- p + labs(title ="Empirically observed probability of normal
", xlab = "HippoNV") 
print(p) 

 

III. A Product Ranking Problem by Pairwise Comparison 

III.1 Rationale and Formulation 

In recent years, we have witnessed a growing interest in estimating the 

ranks of a list of items. This same problem could be found in a variety of 

applications, such as the online advertisement of products on Amazon or 

movie recommendation by Netflix. These problems could be analytically 

summarized as: given a list of items denoted by 𝑴 = {𝑀1,𝑀2, … ,𝑀𝑝}, what 

is the rank (denoted by 𝝓 = {𝜙1, 𝜙2, … , 𝜙𝑝}) we should attribute to them? 

Here, 𝝓 is a vector of real values, i.e., the larger the 𝜙𝑖, the higher the rank 

of 𝑀𝑖. 

To obtain this ranking of the items, comparison data (either by domain 

expert or users) is often collected, e.g., a pair of items in 𝑀, let's say, 𝑀𝑖 and 

𝑀𝑗, will be pushed to the expert/user who conduct the comparison to see if 

𝑀𝑖 is better than 𝑀𝑗, and then, a score, denoted as 𝑦𝑘 , will be returned, i.e., 

a positive 𝑦𝑘 indicates that the expert/user knowledge more tends to support 

that 𝑀𝑖 is better than 𝑀𝑗, while a negative 𝑦𝑘 indicates the opposite. Note 

that the larger the 𝑦𝑘 , stronger the knowledge.  

Following this line, we denote the initial data set as 𝐷0, which consists of 

the set of pairwise comparisons that are queried (denoted as a set 𝑺0) and the 

corresponding expert response data (denoted as a vector 𝒚0 ). The next 

question is, how to estimate the underlying ranking 𝝓? And further, how to 

further collect pairwise comparison data to enhance the estimation of 𝝓, i.e., 
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in other words, what should be the new comparisons in 𝑺1 so we can collect 

the corresponding new data 𝒚1? 

 

III. 2 Theory/Method 

Obviously, these are statistical questions. From the first glance, it looks 

unfamiliar. But in this paper1, it is revealed that the underlying statistical 

model is a linear regression model! This surprising recognition indicates that 

we can readily use the rich array of methods and conclusions in linear 

regression framework to solve many problems in ranking! 

 To see that, first, it is important to make explicit what probabilistic 

relationship is implied in the pairwise comparison mechanism, that can be 

used to model the relationship between the parameter to be estimated (𝝓) 

and the data (𝐷0). Specifically, we could establish a probabilistic relationship 

between 𝝓 and the observed 𝐷0, i.e., for the kth comparison that involves 

items 𝑀𝑖 and 𝑀𝑗, we could assume that 𝑦𝑘 is distributed as: 

𝑦𝑘~𝑁(𝜙𝑖 − 𝜙𝑗 , 𝜎
2 𝑤𝑘⁄ ). 

This essentially assumes that if the item 𝑀𝑖 is more (or less) important 

than the model 𝑀𝑗, we will expect to see positive (or negative) values of 𝑦𝑘 . 

This is consistent with the nature of the expert/user comparison data in many 

applications. Note that, 𝜎2  encodes the overall accuracy level of the 

expert/user knowledge, as more knowledgeable expert/user will tend to have 

smaller 𝜎2 . Also, 𝑤𝑘  encodes uncertainty in this particular comparison, 

acting as the local accuracy level of the expert/user knowledge. In practice, 

expert/user could also provide their confidence level, i.e., 𝑤𝑘, along with 𝑦𝑘 . 

Alternatively, when this information is lacking, we could simply assume 

𝑤𝑘 = 1 for all the comparison data. Following this line, we could further 

illustrate how we could represent the comparison data in a more compact 

matrix form. This is shown in Figure 3.5. 

                                                      
1 Osting, B., Brune, C. and Osher, S. Enhanced statistical rankings via targeted data collection. 

Proceedings of the 30th International Conference on Machine Learning (ICML) 2013. 
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Figure 3.5: The data structure and its analytic formulation underlying 

the pairwise comparison. Each node is an item in 𝑀 while each arc 

represents a comparison of two items 

 

Note that it is straightforward to derive the structure of the matrix 𝐁 as 

shown in Figure 3.5: 

𝐁𝑘𝑗 = {
1 𝑖𝑓 𝑗 = ℎ𝑒𝑎𝑑(𝑘)
−1 𝑖𝑓 𝑗 = 𝑡𝑎𝑖𝑙(𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Here, 𝑗 = 𝑡𝑎𝑖𝑙(𝑘) if the kth comparison is asked in the form as “if 𝑀𝑖 is 

better than 𝑀𝑗 ” (i.e., denoted as 𝑀𝑖 → 𝑀𝑗 ); otherwise, 𝑗 = ℎ𝑒𝑎𝑑(𝑘)  for 

question asked in the form as 𝑀𝑗 → 𝑀𝑖 . 

Then, we can derive that  

𝒚~𝑁(𝐁𝝓, 𝜎2𝐖−1). 

where 𝐖 is the diagonal matrix of elements 𝑤𝑘 for 𝑘 = 1,2, … , 𝐾. Thus, for 

the initial expert comparison data 𝐷0, we could derive that  

𝒚0~𝑁(𝐁0𝝓,𝜎
2𝐖0

−1). 

where 𝐁0  is defined on the set 𝑆0 . Using the framework developed in 

Chapter 2, we could derive the GLS estimator of 𝝓 as 

�̂� = (𝐁0
𝑇𝐖0𝐁0)

−1𝐁0
𝑇𝐖0𝒚0. 

The recognition of the linear regression formulation underling the ranking 

problem brings more insights and operational possibilities to solve the 

problem better. For example, as many design of experiments techniques have 

been developed for optimal data collection, while most are based on the 

linear regression framework, these techniques could find relevance in this 
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ranking problem, e.g., what new comparison data we should collect to 

optimize statistical accuracy and efficiency given limited budget? As shown 

in the paper, an E-optimal design method could be introduced here to 

optimally decide on which new comparison should be conducted. As this 

process involves Bayesian statistics, optimal design, and optimization, 

interested readers are encouraged to read the paper.  

 

IV. Exercises 

Data analysis 

1. Create a new binary variable based on AGE, by labeling the subjects 

whose age is above the mean of AGE to be class “1” and labeling the 

subjects whose age is below the mean of AGE to be class “0”.  Then, 

repeat the analysis shown in the R lab of this chapter for the logistic 

regression model and the analysis shown in the R lab of Chapter 2 

for decision tree model. Identify the final models you would select, 

evaluate the models, and compare the regression model with the tree 

model.   

2. Find two datasets from the UCI data repository or R datasets. 

Conduct a detailed analysis for both datasets using both logistic 

regression model and the tree model, e.g., for regression model, you 

may want to conduct model selection, model comparison, testing of 

the significance of the regression parameters, evaluation of the R-

squared and significance of the model. Also comment on the 

application of your model on the context of the dataset you have 

selected.  

3. Pick up any dataset you have used, and randomly split the data into 

two halves. Use one half to build the tree model and the regression 

model. Test the models’ prediction performances on the second half. 

Report what you have found, adjust your way of model building, and 

suggest a strategy to find the model you consider as the best.   

 

Derivation 
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4. Use your pen and paper, write up the optimization process to 

estimate the regression parameters using the dataset in Table 2.4. If 

your optimization process requires more than 3 iterations to 

converge, delineate 3 iterations is sufficient.  

 

Programming  

5. Write your own R script to implement the IRLS algorithm of a 

logistic regression model. Compare the output from your script with 

the output from glm(). 

6. Write your own R script to generate prediction of new data points 

using an estimated logistic regression model.  

7. Write your own R script to implement the ranking problem 

formulated as a linear regression model. Test it on the dataset shown 

below to estimating the 𝝓. 

𝑀6 → 𝑀4 = 2.33, 𝑀5 → 𝑀6 = 1.80, 𝑀4 → 𝑀3 = −7.45, 𝑀2 →

𝑀8 = 13.18 , 𝑀2 → 𝑀6 = 4.37 , 𝑀1 → 𝑀5 = 0.32 , 𝑀7 → 𝑀2 =

−0.43. 

(Here, for validation only, the comparison data is generated from 

𝝓 = {3.9,10.2,6.7,1.7,5.2,3.4,7.8,2.3}.  

 

 



 

 

 

 

 

 

CHAPTER 4: COMPUTATION         
BOOTSTRAP AND RANDOM FOREST   

 

 

 

 

 

I. Overview 

Chapter 4 is about “Computation”. It is how we can work with computer, 

exploiting its remarkable power in iterations and conducting repetitive tasks 

which human beings often find burdensome to do. It is this capacity of 

computers in conducting repetitive tasks that enables applications of modern 

optimization algorithms, which underlie many data analytics models. This 

capacity also provides powerful nonparametric statistical techniques, leading 

to developments of powerful computational statistical models that don’t 

require analytic tractability. A particular invention that has played a critical 

role in many data analytic applications is the Bootstrap technique. Building 

on the idea of Bootstrap and its variants, Random Forest was also invented 

together with many more powerful ensemble learning methods.  
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II. How Bootstrap Works 

II.1 Rationale and Formulation 

There are multiple perspectives to look at Bootstrap. One perspective that 

has been well studied in the seminar book1 of Efron and Tibshirani is to treat 

Bootstrap as a simulation of the “sampling process”. As we know, sampling 

refers to the idea that we could draw samples again and again from the same 

population. Many statistical techniques make sense only when we consider 

the possibility of conducting sampling. For example, when we say the type 1 

error in a hypothesis testing is 0.05, we mean that on average we may reject 

the null hypothesis 5 times even when it is true – if we conduct the same 

hypothesis testing 100 times (i.e., by repeating the sampling process 100 times, 

each time we calculate the test statistics and compare it with the critical value, 

and make a decision).  

Of course, Bootstrap is not a real sampling process since no new data 

points are really collected. It is a simulated sampling process. Probably the 

idea of Bootstrap could be better demonstrated in Figure 4.1: 

 

 

Figure 4.1: A demonstration of the Bootstrap process 

 

As shown in Figure 4.1, a collected dataset has 5 samples. The 5 samples 

provide a representation of the underlying population. To mimic the 

                                                      
1 Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman & 

Hall/CRC, 2993.  
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sampling process that draws samples from the underlying population, 

Bootstrap suggests that we could resample the 5 samples to generate 

Bootstrapped datasets instead of really drawing samples from the underlying 

population. The idea seems to be simple but is very effective.  

 

II.2 Theory/Method 

The importance of the sampling process to classic statistics: Many 

classic statistical theories are built on the sampling process. For example, let’s 

consider the estimator of the mean of a normal population. Assume that we 

have a random variable 𝑋 that follows a normal distribution, 𝑋~𝑁(𝜇, 𝜎2). 

For simplicity, let’s assume that we have known the variance 𝜎2. So we want 

to estimate the mean 𝜇. What we need to do is to perform a sampling process, 

by randomly drawing a few samples from the distribution. Denote these 

samples as 𝑥1, 𝑥2, …, 𝑥𝑛. To estimate 𝜇, it seems natural to use the average 

of the samples, denoted as �̅� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . Thus, we propose to use �̅� as an 

estimator of 𝜇, i.e., �̂� = �̅�.  

A question arises, how good is �̅� to be an estimator of 𝜇? 

To evaluate the uncertainty of the estimated 𝜇 by �̅�, in theory, we need to 

repeat the sampling process and the estimation again and again. If �̅� is in 

theory a good estimator of 𝜇, then we should be able to repeatedly observe 

that �̅�  is numerically close to 𝜇  in the replications. Fortunately, when 

assuming that 𝑋  follows a normal distribution, we could derive that �̅�  is 

another normal distribution, �̅�~𝑁(𝜇, 𝜎2 𝑛⁄ ). Thus, without really doing the 

physical experiments to repeat the sampling process and drawing many 

samples, we can answer the previous question. First, we know that �̅� is an 

unbiased estimator as 𝐸(�̅�) = 𝜇. Also, we know that the larger the sample 

size, the better estimation of 𝜇 by �̅�, since the variance of the estimator is 

𝜎2 𝑛⁄ . Knowing the analytic form of �̅� is the key here. 

Bootstrap – a computational remedy when the sampling process 

cannot be analytically articulated: But how about we don’t know what is 
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the distribution of 𝑋? Then it would make the question difficult to answer as 

we don’t know what is the analytic form of �̅�.  

Bootstrap provides such a computational remedy that enables us to 

investigate the properties of literally any estimator by computationally 

mimicking the sampling process. For example, while the distribution of 𝑋 is 

unknown, we could follow the Bootstrap scheme illustrated in Figure 4.2 to 

evaluate the sampling distribution of �̅�. 

 

 
Figure 4.2: The (nonparametric) Bootstrap scheme for computationally 

evaluating the sampling distribution of �̅� 

 

The Bootstrap scheme illustrated in Figure 4.2 is called nonparametric 

Bootstrap since no parametric information is used. This is not the only way 

we can conduct Bootstrap for studying the properties of any estimator in the 

sampling process. For example, a parametric Bootstrap scheme is illustrated 

in Figure 4.3 to perform the same study – to study the sampling distribution 

of �̅�. The only difference between the nonparametric Bootstrap scheme in 

Figure 4.2 and the parametric Bootstrap scheme in Figure 4.3 is that, when 
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generating new samples, the nonparametric Bootstrap uses the original 

dataset while the parametric Bootstrap uses the fitted distribution model. 

 

 
Figure 4.3: The (parametric) Bootstrap scheme for computationally 

evaluating the sampling distribution of �̅� 

 

Bootstrap for regression model: How to evaluate the uncertainties of 

the regression parameters using Bootstrap? 

In Chapter 2, we showed that by imposing the Gaussian assumptions on 

the error term of the regression model, we come to the recognition that the 

estimated regression parameters are also random variables, and the 

propagation of the uncertainty from the error term to the estimation of the 

regression parameters could be analytically articulated due to the benefit of 

the linear relationship assumed between predictors and outcome variable. In 

summary, the Gaussian assumption and the linear assumptions are critical for 

the analytic tractability.  

Here, we introduce a more generic approach, based on the idea of 

Bootstrap, that could be applied on cases where we don’t have to require 

those assumptions. Using Bootstrap to evaluate the linear regression model, 

we encounter a variety of options: 
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Option 1: we could simply resample the data points (i.e., the (𝒙,𝑦) pairs) 

similarly as the nonparametric Bootstrap scheme. Then, for each sampled 

dataset, we can fit a regression model and obtain the fitted regression 

parameters. Suppose we repeat this sampling process 10,000 times, we could 

obtain 10,000 set of estimated regression parameters. These could be enough 

for us to evaluate the sampling distribution of the regression parameters and 

see if the parameters are significantly different from zero.  

Option 2: we could simulate new samples of 𝑋 using the nonparametric 

Bootstrap method on the samples of 𝑋 only. Then, for the new samples of 

𝑋 , we draw samples of 𝑌 using the fitted conditional distribution model 

𝑃(𝑌|𝑋) . This is a combination of the nonparametric and parametric 

Bootstrap methods to simulate 𝑋 and 𝑌. Then, for each sampled dataset, we 

can fit a regression model and obtain the fitted regression parameters. 

Option 3: we could fix the 𝑋, only sample for 𝑌. In this way we implicitly 

assume that the uncertainty of the dataset mainly comes from 𝑌. To sample 

𝑌, we draw samples using the fitted conditional distribution model 𝑃(𝑌|𝑋). 

In this way we could also generate many new datasets, such that we can 

generate many sets of fitted regression parameters. 

The three options above are just some examples. There are other options 

that could be developed. As a matter of fact, as a more complicated model 

than simple parametric estimation in distribution fitting, how to conduct 

Bootstrap on regression models is a challenging problem that demands 

solutions from a variety of perspectives bearing different assumptions. 

Similarly, Bootstrap for other complex models such as time series models or 

decision tree models has demonstrated to be a challenging problem. This will 

be further discussed later in this Chapter when introducing the Random 

Forest.  

 

II.3 R Lab 

In what follows we implement the Bootstrap scheme in statistical tasks 

such as parameter estimation, samples comparison, and regression models. 

First, let’s load the AD dataset into the R workspace: 
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#### Dataset of Alzheimer's Disease  
#### Objective: prediction of diagnosis  
AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 

Let’s pick up the variable HippoNV. The first statistical task we’d like to see 

is to estimate the mean of HippoNV in the population under study. Assuming 

that the variable HippoNV is distributed as a normal distribution, we could use 

the fitdistr() function from the R package “MASS” to estimate the 

parameters, mean and standard derivation, as shown in below: 

require(MASS) 

fit <- fitdistr(AD$HippoNV, densfun="normal")   

The fitdistr() function returns the estimated parameters together with 

their standard derivation. Note that, here, the standard derivation of the 

estimated parameters is derived based on the statistical theory underlying this 

estimation, that builds on the assumption of normality of the variable.  

fit 

##       mean           sd      
##   0.471662891   0.076455789  
##  (0.003362522) (0.002377662) 

 

Figure 4.4: Histogram of HippoNV and its estimated normal curve 
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To give a visual sense of this estimation, the R code in below shows the 

histogram of the variable HippoNV and the normal curve with the estimated 

parameters: 

hist(AD$HippoNV, pch=20, breaks=25, prob=TRUE, main="") 
curve(dnorm(x, fit$estimate[1], fit$estimate[2]), col="red", lwd=
2, add=T) 

From Figure 4.4, it seems that the normality assumption is reasonable and 

the estimation of the parameters fits the empirical data well. 

Now, let’s focus on the question of how uncertain this estimation is. As 

we mentioned, the reason that the standard derivation of the estimated 

parameters could be provided by calling upon fit() is because the normality 

assumption is assumed. If we don’t want to make this assumption, Bootstrap 

could be used in a nonparametric way as shown in Figure 4.2. The following 

R codes implement the nonparametric Bootstrap for this parameter 

estimation problem: 

# draw R bootstrap replicates 
R <- 10000 
# init location for bootstrap samples 
bs_mean <- rep(NA, R) 
# draw R bootstrap resamples and obtain the estimates 
for (i in 1:R) { 
  resam1 <- sample(AD$HippoNV, dim(AD)[1], replace = TRUE) 
  fit <- fitdistr(resam1 , densfun="normal")   
  bs_mean[i] <- fit$estimate[1] 
} 

Here, 10,000 replications are simulated by the Bootstrap method. The 

bs_mean is a vector of 10,000 elements to record all the estimated mean 

parameter in these replications. These 10,000 estimated parameters could be 

taken as a set of samples. The following R code is used to compute the 95% 

CI of the estimated mean. 

# sort the mean estimates to obtain bootstrap CI 
bs_mean.sorted <- sort(bs_mean) 
# 0.025th and 0.975th quantile gives equal-tail bootstrap CI 
CI.bs <- c(bs_mean.sorted[round(0.025*R)], bs_mean.sorted[round
(0.975*R+1)]) 
CI.bs 
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It could be seen that this 95% CI is pretty much close to the 95% CI 

provided by theoretical result, showing the validity and efficacy of the 

Bootstrap method to evaluate the uncertainty of a statistical operation.  

CI.bs 

## [1] 0.4649877 0.4781062 

 

 

Figure 4.5: Histogram of the estimated mean parameter of HippoNV by 

Bootstrap with 10,000 replications 

 

                  

Figure 4.6: Histograms of HippoNV in the normal and diseased groups 

 

The following R codes draws a histogram of the bs_mean to give us some 

visual information about the Bootstrapped estimation of the mean. 
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## Plot the bootstrap distribution with CI 
# First put data in data.frame for ggplot() 
dat.bs_mean <- data.frame(bs_mean) 

library(ggplot2) 

## Warning: package 'ggplot2' was built under R version 3.3.3 

p <- ggplot(dat.bs_mean, aes(x = bs_mean)) 
p <- p + geom_histogram(aes(y=..density..)) 
p <- p + geom_density(alpha=0.1, fill="white") 
p <- p + geom_rug() 
# vertical line at CI 
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash") 
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash") 
p <- p + labs(title = "Bootstrap distribution of mean estimate of
 HippoNV") 
print(p) 

And the histogram is shown in Figure 4.5. 

While the estimation of the mean of HippoNV is a simple operation, in 

what follows we consider a relatively more complex statistical operation, 

comparison of the mean parameters of HippoNV across the two classes, 

normal and diseased. The following R code creates a temporary dataset for 

this purpose. 

tempData <- data.frame(AD$HippoNV,AD$DX_bl) 
names(tempData) = c("HippoNV","DX_bl") 
tempData$DX_bl[which(tempData$DX_bl==0)] <- c("Normal") 
tempData$DX_bl[which(tempData$DX_bl==1)] <- c("Diseased") 

We then use ggplot() to visualize the two distributions by comparing 

their histograms, which is shown in Figure 4.6. 

p <- ggplot(tempData,aes(x = HippoNV, colour=DX_bl)) 
p <- p +  geom_histogram(aes(y = ..count.., fill=DX_bl), alpha=0.
5,position="identity")  
print(p) 

The following R code shows how the nonparametric Bootstrap method 

as shown in Figure 4.2 can be implemented here. 

# draw R bootstrap replicates 
R <- 10000 



 

90 
 

# init location for bootstrap samples 
bs0_mean <- rep(NA, R) 
bs1_mean <- rep(NA, R) 
# draw R bootstrap resamples and obtain the estimates 
for (i in 1:R) { 
  resam0 <- sample(tempData$HippoNV[which(tempData$DX_bl=="Normal
")],  
                   length(tempData$HippoNV[which(tempData$DX_bl==
"Normal")]),  
                   replace = TRUE) 
  fit0 <- fitdistr(resam0 , densfun="normal")   
  bs0_mean[i] <- fit0$estimate[1] 
  resam1 <- sample(tempData$HippoNV[which(tempData$DX_bl=="Diseas
ed")],  
                   length(tempData$HippoNV[which(tempData$DX_bl==
"Diseased")]), 
                   replace = TRUE) 
  fit1 <- fitdistr(resam1 , densfun="normal")  
  bs1_mean[i] <- fit1$estimate[1] 
} 
 
bs_meanDiff <- bs0_mean - bs1_mean 
 
# sort the mean estimates to obtain bootstrap CI 
bs_meanDiff.sorted <- sort(bs_meanDiff) 
# 0.025th and 0.975th quantile gives equal-tail bootstrap CI 
CI.bs <- c(bs_meanDiff.sorted[round(0.025*R)], bs_meanDiff.sorted
[round(0.975*R+1)]) 
CI.bs 

 

 

Figure 4.7: Histogram of the estimated mean difference of HippoNV in 

the two groups by Bootstrap with 10,000 replications 
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Then, the 95% CI of the difference of the two mean parameters is: 

CI.bs 

## [1] 0.08066058 0.10230428 

The following R codes draws a histogram of the bs_meanDiff to give us 

some visual information about the Bootstrapped estimation of the mean 

difference, which is shown in Figure 4.7. 

## Plot the bootstrap distribution with CI 
# First put data in data.frame for ggplot() 
dat.bs_meanDiff <- data.frame(bs_meanDiff) 
 
library(ggplot2) 
p <- ggplot(dat.bs_meanDiff, aes(x = bs_meanDiff)) 
p <- p + geom_histogram(aes(y=..density..)) 
p <- p + geom_density(alpha=0.1, fill="white") 
p <- p + geom_rug() 
# vertical line at CI 
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash") 
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash") 
p <- p + labs(title = "Bootstrap distribution of the estimated me
an difference of HippoNV between normal and diseased") 
print(p) 

Now let’s implement the Bootstrap on the regression model, a more 

complicated statistical operation than the aforementioned two. First, we 

recall the use of lm() function to fit the regression model of MMSCORE using 

the demographics variables. Note that in this procedure, the standard 

derivation of the estimated regression parameters could be derived by theory 

(i.e., by assuming the error term is a normal distribution).  

# Use Bootstrap for multiple regression model 
tempData <- data.frame(AD$MMSCORE,AD$AGE, AD$PTGENDER, AD$PTEDUCA
T) 
names(tempData) <- c("MMSCORE","AGE","PTGENDER","PTEDUCAT") 
lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = temp
Data) 
summary(lm.AD_demo) 

The fitted regression model is: 
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##  
## Call: 
## lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = tempD
ata) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -8.4290 -0.9766  0.5796  1.4252  3.4539  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 27.70377    1.11131  24.929  < 2e-16 *** 
## AGE         -0.02453    0.01282  -1.913   0.0563 .   
## PTGENDER    -0.43356    0.18740  -2.314   0.0211 *   
## PTEDUCAT     0.17120    0.03432   4.988 8.35e-07 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.062 on 513 degrees of freedom 
## Multiple R-squared:  0.0612, Adjusted R-squared:  0.05571  
## F-statistic: 11.15 on 3 and 513 DF,  p-value: 4.245e-07 

Now, let’s discard the assumption of normality of the error term, and use 

Bootstrap to induce perturbation into the data and see if the significance of 

the estimated parameters could resist this perturbation.  

# draw R bootstrap replicates 
R <- 10000 
# init location for bootstrap samples 
bs_lm.AD_demo <- matrix(NA, nrow = R, ncol = length(lm.AD_demo$co
efficients)) 
# draw R bootstrap resamples and obtain the estimates 
for (i in 1:R) { 
  resam_ID <- sample(c(1:dim(tempData)[1]), dim(tempData)[1], rep
lace = TRUE) 
  resam_Data <- tempData[resam_ID,] 
  bs.lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data =
 resam_Data) 
  bs_lm.AD_demo[i,] <- bs.lm.AD_demo$coefficients 
} 

As bs_lm.AD_demo records all the estimated regression parameters in the 

10,000 replications, here, for illustration purpose, we can take a look at the 

regression coefficient of the variable AGE by the following R code. 

bs.AGE <- bs_lm.AD_demo[,2] 
# sort the mean estimates of AGE to obtain bootstrap CI 
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bs.AGE.sorted <- sort(bs.AGE) 
 
# 0.025th and 0.975th quantile gives equal-tail bootstrap CI 
CI.bs <- c(bs.AGE.sorted[round(0.025*R)], bs.AGE.sorted[round(0.9
75*R+1)]) 
CI.bs 

Then we can see the 95% CI of AGE is shown in below, which includes 0 

in the range. This is consistent with the conclusion made in the 

aforementioned analysis which shows that the variable AGE is insignificant 

(i.e., p-value=0.0563) by t-test that is based on the normality assumption.  

CI.bs 

## [1] -0.053940482  0.005090523 

 

 

Figure 4.8: Histogram of the estimated regression parameter of AGE 

by Bootstrap with 10,000 replications 

 

The following R codes draws a histogram of the Bootstrapped estimation 

of the regression parameter of AGE to give us some visual information about 

the Bootstrapped estimation, which is shown in Figure 4.8. 

## Plot the bootstrap distribution with CI 
# First put data in data.frame for ggplot() 
dat.bs.AGE <- data.frame(bs.AGE.sorted) 
 
library(ggplot2) 
p <- ggplot(dat.bs.AGE, aes(x = bs.AGE)) 
p <- p + geom_histogram(aes(y=..density..)) 
p <- p + geom_density(alpha=0.1, fill="white") 
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p <- p + geom_rug() 
# vertical line at CI 
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash") 
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash") 
p <- p + labs(title = "Bootstrap distribution of the estimated re
gression parameter of AGE") 
print(p) 

Then we can see the 95% CI of PTEDUCAT as shown in below, which is 

between 0.1021189 and 0.2429209. This is consistent with the conclusion 

made in the aforementioned analysis which shows that the variable PTEDUCAT 

is significant (i.e., p-value=8.35e-07) by t-test that is based on the normality 

assumption.  

bs.PTEDUCAT <- bs_lm.AD_demo[,4] 
# sort the mean estimates of PTEDUCAT to obtain bootstrap CI 
bs.PTEDUCAT.sorted <- sort(bs.PTEDUCAT) 
 
# 0.025th and 0.975th quantile gives equal-tail bootstrap CI 
CI.bs <- c(bs.PTEDUCAT.sorted[round(0.025*R)], bs.PTEDUCAT.sorted
[round(0.975*R+1)]) 
CI.bs 

CI.bs 

## [1] 0.1021189 0.2429209 

 

 

Figure 4.9: Histogram of the estimated regression parameter of 

PTEDUCAT by Bootstrap with 10,000 replications  
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The following R codes draws a histogram of the Bootstrapped estimation 

of the regression parameter of PTEDUCAT, which is shown in Figure 4.9. 

## Plot the bootstrap distribution with CI 
# First put data in data.frame for ggplot() 
dat.bs.PTEDUCAT <- data.frame(bs.PTEDUCAT.sorted) 
 
library(ggplot2) 
p <- ggplot(dat.bs.PTEDUCAT, aes(x = bs.PTEDUCAT)) 
p <- p + geom_histogram(aes(y=..density..)) 
p <- p + geom_density(alpha=0.1, fill="white") 
p <- p + geom_rug() 
# vertical line at CI 
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash") 
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash") 
p <- p + labs(title = "Bootstrap distribution of the estimated re
gression parameter of PTEDUCAT") 
print(p) 

 

III. Random Forests 

III.1 Rationale and Formulation 

Building on the decision tree model, a random forest consists of multiple 

tree models. There are two main sources for randomness. First, each tree is 

built on a randomly selected set of samples by applying Bootstrap on the 

original dataset. Second, in building a tree, specifically in splitting a node in 

the tree, a subset of features is randomly selected to choose the best split. 

Figure 4.10 shows this scheme of random forest.  

Random forest is a powerful machine learning method that has gained 

superior performances in many practical tasks, including many high-profiled 

data competitions over the past few years. It is a simple but effective 

mechanism to aggregate many simple models to tackle complex prediction 

task. Note that it is not necessary that in machine learning a random put-

together of many simple models would lead to better performance than its 

constituting parts. Here we use the following example to show why the 

random forest, as a sum, is better than its parts.  
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Figure 4.10: How random forest uses Bootstrap to grow trees 

 

 

Figure 4.11: A linearly separable dataset with two predictors 

 

The following R code generates a data set with two predictor variables 

and a class variable as the outcome variable. As shown in Figure 4.11, the 

two classes are separable by a linear boundary. 

rm(list = ls(all = TRUE)) 
require(rpart) 
require(dplyr) 
require(ggplot2) 
require(randomForest) 
ndata <- 2000 
X1 <- runif(ndata, min = 0, max = 1) 
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X2 <- runif(ndata, min = 0, max = 1) 
data <- data.frame(X1, X2) 
data <- data %>% mutate(X12 = 0.5 * (X1 - X2), Y = ifelse(X12 >= 
0, 1, 0)) 
data <- data %>% select(-X12) %>% mutate(Y = as.factor(as.charact
er(Y))) 
ggplot(data, aes(x = X1, y = X2, color = Y)) + geom_point() + lab
s(title = "Data points") 

 

 

Figure 4.12: The decision boundary of one single decision tree 

 

Figure 4.13: The decision boundary of a random forest 
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Both the random forest and the decision tree are applied to the data. The 

classification boundaries the models can generate are shown in Figure 4.12 

and Figure 4.13, for decision tree and random forest, respectively.  

rf_model <- randomForest(Y ~ ., data = data) 
tree_model <- rpart(Y ~ ., data = data) 
 
pred_rf <- predict(rf_model, data, type = "prob")[, 1] 
pred_tree <- predict(tree_model, data, type = "prob")[, 1] 
data_pred <- data %>% mutate(pred_rf_class = ifelse(pred_rf < 0.
5, 0, 1)) %>%  
    mutate(pred_rf_class = as.factor(as.character(pred_rf_clas
s))) %>% mutate(pred_tree_class = ifelse(pred_tree <  
    0.5, 0, 1)) %>% mutate(pred_tree_class = as.factor(as.charact
er(pred_tree_class))) 
ggplot(data_pred, aes(x = X1, y = X2, color = pred_tree_class)) +
 geom_point() +  
    labs(title = "Classification boundary from a single decision 
tree")  

ggplot(data_pred, aes(x = X1, y = X2, color = pred_rf_class)) + g
eom_point() +  
    labs(title = "Classification bounday from random forests") 

As we can see from Figure 4.12, the classification boundary generated by 

the decision tree model has difficult to approximate the linear boundary. 

There is an inherent limitation of a tree model to fit smooth boundaries due 

to its box-shaped nature resulting from its use of rules to segment the data 

space for making predictions. In contrast, the classification boundary of 

random forest is much smoother than the one of the decision tree, and is a 

better approximation of the linear classification boundary. 

 

III.2 Theory/Method 

Pretty much like decision tree, the theoretical line of random forest 

follows the algorithmic modeling framework which is very different from the 

data modeling framework of the linear regression models. Thus, random 

forest is more of a systematically organized set of heuristics, rather than 

highly regulated algebraic operations derived from a mathematical 

characterization. Motivated by this recognition, we present the process of 

random forest using a simple example with the data shown in below. 
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Table 4.1: An exemplary dataset 

 

ID X1 X2 Class 

1 1 1 C0 

2 1 0 C1 

3 0 1 C1 

4 0 0 C0 

 

For random forests with 𝑚 trees, each tree is built on a resampled dataset 

that consists of data instances randomly selected from the original data set, 

often with the same size as the original data set, sampled with replacement. 

As shown in Figure 4.14, the first resampled dataset includes data instances 

(represented by their IDs) {1,1,3,4} and is used for building the first tree. 

The second resampled dataset includes data instances (represented by their 

IDs) {2,3,4,4} and is used for building the second tree. And so on so forth, 

until the maximum number of trees is built.  

 

 
Figure 4.14: Bootstrap a dataset in random forest to build trees 

 

To build the first tree, we begin with the root node that contains {1,1,3,4}. 

Then, we need to split the root node and reduce impurity. In the 

randomForest R package, the Gini index is used measure impurity.  The Gini 

index for a data set is defined as 

𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑐(1 − 𝑝𝑐)
𝐶
𝑐=1 , 

where 𝐶 is the number the classes in the dataset, and 𝑝𝑐 is the proportion of 

data instances that come from the class 𝑐.  
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The Gini index plays the same role as the entropy we have introduced in 

Chapter 2. Here, using the following R code, we plot the Gini index and 

entropy values versus the percentage of class 1 (for two-class problems) to 

see their similarity, as shown in Figure 4.15. 

entropy <- function(p_v) { 
    e <- 0 
    for (p in p_v) { 
        if (p == 0) { 
            this_term <- 0 
        } else { 
            this_term <- -p * log2(p) 
        } 
        e <- e + this_term 
    } 
    return(e) 
} 
gini <- function(p_v) { 
    e <- 0 
    for (p in p_v) { 
        if (p == 0) { 
            this.term <- 0 
        } else { 
            this.term <- p * (1 - p) 
        } 
        e <- e + this.term 
    } 
    return(e) 
} 
 
entropy.v <- NULL 
gini.v <- NULL 
p.v <- seq(0, 1, by = 0.01) 
for (p in p.v) { 
    entropy.v <- c(entropy.v, (entropy(c(p, 1 - p)))) 
    gini.v <- c(gini.v, (gini(c(p, 1 - p)))) 
} 
plot(p.v, gini.v, type = "l", ylim = c(0, 1), xlab = "percentage 
of class 1",  
    col = "red", ylab = "impurity measure", cex.lab = 1.5, cex.ax
is = 1.5, cex.main = 1.5,  
    cex.sub = 1.5) 
lines(p.v, entropy.v, col = "blue") 
legend("topleft", legend = c("Entropy", "Gini index"), col = c("b
lue", "red"), lty = c(1, 1), cex = 0.8) 
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It can be seen in Figure 4.15 that the two impurity measures are highly 

correlated. Both reach minimum of zero when there is only one class in the 

dataset, and maximum when there are equal number of data instances for 

different classes. In practice, thus, they produce similar trees. 

 

 
Figure 4.15: Gini index versus Entropy 

 

Similar as the information gain, the Gini gain can be defined as  

∇ 𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 − 𝑤𝑖𝐺𝑖𝑛𝑖𝑖, 

where 𝐺𝑖𝑛𝑖 is the Gini index at the node to be split;  𝑤𝑖 and 𝐺𝑖𝑛𝑖𝑖, are the 

proportion of samples and the Gini index at the 𝑖𝑡ℎ  children node, 

respectively. 

Back to the example, the Gini index of the root node of the first tree is 

calculated as  
3

4
∗
1

4
+
1

4
∗
3

4
= 0.375. 

The possible splitting rule candidates include four options: 𝑋1 = 0, 𝑋2 =

0, 𝑋1 = 1 and 𝑋2 = 1. Since both variables have two distinct values, both 

splitting rules 𝑋1 = 0 and 𝑋1 = 1 will produce the same children nodes, and 

both splitting rules 𝑋2 = 0  and  𝑋2 = 1  will produce the same children 

nodes. Therefore, we can reduce the possible splitting rule candidates to two: 

𝑋1 = 0 and 𝑋2 = 0.   
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Further, as we mentioned earlier in this section, the second source of 

randomness in a random forest is to randomly select the variables for splitting 

a node. In general, for a data set with 𝑝 predictor variables, √𝑝 variables are 

randomly selected for splitting. In our simple example, as there are two 

variables, we assume that 𝑋1 is randomly selected for splitting the root node. 

Thus, 𝑋1 = 0 is used for splitting the root node which generates the decision 

tree model as shown in Figure 4.16. 

 

 
Figure 4.16: The decision tree with one split 

 

 

The Gini gain can be calculated as 

0.375 − 0.5 ∗ 0 − 0.5 ∗ 0.5 = 0.125. 

Let’s continue to grow the tree. Now, at the internal node containing data 

{3,4}, assume that 𝑋2 is randomly selected. The node can be further split as 

shown in Figure 4.17. 

 
Figure 4.17: The decision tree with two splits 
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At this point, all nodes cannot be split further, and each leaf node can be 

labeled with the majority class of the node such that they become decision 

nodes. Thus, the final tree model is shown in Figure 4.18. Applying this 

decision tree to the 4 training data points, we can get the error rate as 25%.  

 
Figure 4.18: The final decision tree model with decision nodes 

 

Similarly, the second, third, …, 𝑚𝑡ℎ trees can be built. Usually, in random 

forest models, the pruning is not needed. Rather, we control the depth of the 

tree models to be created (i.e., use the parameter nodesize in the function 

randomForest).  

To make a prediction for a data point, each tree makes a prediction for 

the data point, and the random forest model combines these predictions and 

selects the most popular prediction among all trees as the final prediction.  

Note that, each tree in random forests can be weak classifier or even 

wrong model. But when in aggregation, the joint predictions become stronger. 

In what follows, we apply random forest on the toy example data with 

different number of trees. For each random forest model, we run the 

experiments 200 times and collect its overall performance using boxplots as 

shown in Figure 4.19.  

require(dplyr) 
require(ggplot2) 
require(randomForest) 
set.seed(1) 
data <- rbind(c("0", "0", "C0"), c("1", "0", "C1"), c("0", "1", "
C1"), c("0",  
    "0", "C0")) %>% as.data.frame() 
colnames(data) <- c("X1", "X2", "Classs") 
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results <- NULL 
for (i in c(1:9, (1:10) * 10)) { 
    for (replicate in 1:200) { 
        rf.model <- randomForest(Classs ~ ., data = data, ntree =
 i, keep.inbag = TRUE) 
        pred.rf <- predict(rf.model, data, type = "class") 
        err <- (length(which(pred.rf == data$Classs))/length(data
$Classs)) 
        results <- rbind(results, c(i, err)) 
    } 
} 
colnames(results) <- c("num_trees", "accuracy") 
results <- as.data.frame(results) %>% mutate(num_trees = as.chara
cter(num_trees)) 
levels(results$num_trees) <- unique(results$num_trees) 
results$num_trees <- factor(results$num_trees, unique(results$num
_trees)) 
ggplot() + geom_boxplot(data = results, aes(y = accuracy, x = num
_trees)) +  
    geom_point(size = 3) 

 

 

Figure 4.19: Accuracy versus number of trees in a random forest model 

 

As shown in Figure 4.19, we can notice that when there are a small 

number of trees (e.g., smaller than 50), the performance is not stable. When 

the number of trees is greater than 50, the accuracy stabilizes. In practice, it 

is usually hard to say how many trees are best. Considerable amount of efforts 
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of model tuning and selection is usually needed to make random forest works 

best on a dataset.  

 

III.3 R Lab 

We apply both decision tree and random forests to the AD dataset. Half 

of the datasets are used for training and the other half for testing. This is run 

for 20 times, and the boxplots of the errors from decision tree and random 

forests are plotted in Figure 4.20 using the following R code. 

 

library(rpart) 
library(dplyr) 
library(tidyr) 
library(ggplot2) 
require(randomForest) 
set.seed(1) 
 
theme_set(theme_gray(base_size = 15)) 
 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 
 
err.tree <- NULL 
err.rf <- NULL 
for (i in 1:20) { 
    train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
    tree <- rpart(DX_bl ~ ., data = data[train.ix, ]) 
    pred.test <- predict(tree, data[-train.ix, ], type = "class") 
    err.tree <- c(err.tree, length(which(pred.test != data[-trai
n.ix, ]$DX_bl))/length(pred.test)) 
     
    rf <- randomForest(DX_bl ~ ., data = data[train.ix, ]) 
    pred.test <- predict(rf, data[-train.ix, ], type = "class") 
    err.rf <- c(err.rf, length(which(pred.test != data[-train.ix,
 ]$DX_bl))/length(pred.test)) 
} 
err.tree <- data.frame(err = err.tree, method = "tree") 
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err.rf <- data.frame(err = err.rf, method = "random_forests") 
 
ggplot() + geom_boxplot(data = rbind(err.tree, err.rf), aes(y = e
rr, x = method)) +  
    geom_point(size = 3) 

 

Figure 4.20: Performance of random forest versus tree model on the 

AD data 

From Figure 4.20 we can see that the error rates of decision tree are higher 

than random forests. Now we investigate the impact of the number of trees 

and the number of features on the performance of random forest. First, let’s 

consider the number of trees (i.e., use the parameter ntree in the function 

randomForest). For each number of trees, 20 runs are conducted, and the 

boxplots for each setting are shown in Figure 4.21.  

library(rpart) 
library(dplyr) 
library(tidyr) 
library(ggplot2) 
require(randomForest) 
set.seed(1) 
 
theme_set(theme_gray(base_size = 15)) 
 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
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rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 
 
results <- NULL 
for (itree in c(1:9, 10, 20, 50, 100, 200, 300, 400, 500, 600, 70
0)) { 
    for (i in 1:20) { 
        train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
        rf <- randomForest(DX_bl ~ ., ntree = itree, data = data
[train.ix, ]) 
        pred.test <- predict(rf, data[-train.ix, ], type = "class
") 
        this.err <- length(which(pred.test != data[-train.ix, ]$D
X_bl))/length(pred.test) 
        results <- rbind(results, c(itree, this.err)) 
        # err.rf <- c(err.rf, length(which(pred.test != 
        # data[-train.ix,]$DX_bl))/length(pred.test) ) 
    } 
} 
 
colnames(results) <- c("num_trees", "error") 
results <- as.data.frame(results) %>% mutate(num_trees = as.chara
cter(num_trees)) 
levels(results$num_trees) <- unique(results$num_trees) 
results$num_trees <- factor(results$num_trees, unique(results$num
_trees)) 
ggplot() + geom_boxplot(data = results, aes(y = error, x = num_tr
ees)) + geom_point(size = 3) 

 

Figure 4.21: Error versus number of trees in a random forest model 
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Figure 4.22: Error versus number of features in a random forest model 

 

It can be seen in Figure 4.21 that, when the number of trees is small, 

particularly less than 10, the improvement on prediction performance of 

random forest is substantial with additional trees added. However, the error 

rates become stable after the number of trees reaches 100. 

Next, let’s consider the number of features (i.e., use the parameter mtry 

in the function randomForest). Here, 100 trees are used. For each number of 

features, 20 runs are conducted, and the boxplots for each setting are shown 

in Figure 4.22. It can be seen that the error rates are not significantly different 

when the number of features changes. 

library(rpart) 
library(dplyr) 
library(tidyr) 
library(ggplot2) 
require(randomForest) 
set.seed(1) 
theme_set(theme_gray(base_size = 15)) 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
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")) 
data <- data[, -rm_indx] 
nFea <- ncol(data) - 1 
results <- NULL 
for (iFeatures in 1:nFea) { 
    for (i in 1:20) { 
        train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
        rf <- randomForest(DX_bl ~ ., mtry = iFeatures, ntree = 1
00, data = data[train.ix,  
            ]) 
        pred.test <- predict(rf, data[-train.ix, ], type = "class
") 
        this.err <- length(which(pred.test != data[-train.ix, ]$D
X_bl))/length(pred.test) 
        results <- rbind(results, c(iFeatures, this.err)) 
        # err.rf <- c(err.rf, length(which(pred.test != 
        # data[-train.ix,]$DX_bl))/length(pred.test) ) 
    } 
} 
 
colnames(results) <- c("num_features", "error") 
results <- as.data.frame(results) %>% mutate(num_features = as.ch
aracter(num_features)) 
levels(results$num_features) <- unique(results$num_features) 
results$num_features <- factor(results$num_features, unique(resul
ts$num_features)) 
ggplot() + geom_boxplot(data = results, aes(y = error, x = num_fe
atures)) +  
    geom_point(size = 3) 
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Figure 4.23: Error versus node size in a random forest model 

 

Further, we experiment with the minimum node size (i.e., use the 

parameter nodesize in the function randomForest), that is, the minimum 

number of instances at a node. This is a parameter to control the depth of 

the trees. Again, each setting is run 20 times and boxplots of their 

performances are shown in Figure 4.23. 

library(dplyr) 
library(tidyr) 
library(ggplot2) 
require(randomForest) 
set.seed(1) 
 
theme_set(theme_gray(base_size = 15)) 
 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 
 
results <- NULL 
for (inodesize in c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 5
0, 60, 70, 80,  
    90, 100)) { 
    for (i in 1:20) { 
        train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
        rf <- randomForest(DX_bl ~ ., ntree = 100, nodesize = ino
desize, data = data[train.ix,  
            ]) 
        pred.test <- predict(rf, data[-train.ix, ], type = "class
") 
        this.err <- length(which(pred.test != data[-train.ix, ]$D
X_bl))/length(pred.test) 
        results <- rbind(results, c(inodesize, this.err)) 
        # err.rf <- c(err.rf, length(which(pred.test != 
        # data[-train.ix,]$DX_bl))/length(pred.test) ) 
    } 
} 
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colnames(results) <- c("min_node_size", "error") 
results <- as.data.frame(results) %>% mutate(min_node_size = as.c
haracter(min_node_size)) 
levels(results$min_node_size) <- unique(results$min_node_size) 
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size)) 
ggplot() + geom_boxplot(data = results, aes(y = error, x = min_no
de_size)) +  
    geom_point(size = 3) 

It can be seen that, the error rates start to rise when the minimum node 

size equals to 40. And the error rates are not substantially different when the 

minimum node size is less than 40. More importantly, this shows that a fully-

grown tree, that is, the tree with a minimum node size as 1, does not hurt the 

accuracy performance of random forests. 

 

III.4 Remarks 

Random forest provides a great example to show when randomness 

should be consciously introduced into the model to boost its performance. 

This seems to be counterintuitive, as a model is supposed to characterize 

randomness and extract the constancy out of randomness. Actually, the 

randomness in the random forest, enabled by the use of Bootstrap to 

randomize choices of data instances and the use of random feature selection 

for building trees, is the key for its success. We provide an intuitive 

explanation that, why random forests work better than a single decision tree 

with the introduction of these randomness. Assuming that the trees in 

random forests are independent, and each tree has an accuracy of 0.6. For 

100 trees, the probability of random forests to make the right prediction 

reaches as high as 0.97: 

∑ 𝐶(𝑛, 𝑘) ∗100
𝑘=51   0.6𝑘 ∗ 0.4100−𝑘. 

Note that, the assumption of the independency between the trees in 

random forests is the key here. This does not hold in reality in a strict sense. 

However, the randomness added to each tree makes them less correlated.  
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IV. Exercises 

Data analysis 

1. Use AGE as the new outcome variable. Build a random forest model 

to predict it. Identify the final models you would select, evaluate the 

model, and compare it with the decision tree model.   

2. Find two datasets from the UCI data repository or R datasets. 

Conduct a detailed analysis for both datasets using the random forest 

model. Also comment on the application of your model on the 

context of the dataset you have selected.  

3. Pick up any dataset you have used, and randomly split the data into 

two halves. Use one half to build the random forest model. Test the 

model’s prediction performance on the second half. Report what 

you have found, adjust your way of model building, and suggest a 

strategy to find the model you consider as the best.   

 

Programming  

4. Write your own R script to use Bootstrap to evaluate the significance 

of the regression parameters of logistic regression model. Compare 

your results with the output from glm(). 

5. Write your own R script to implement the random forest algorithm. 

Use any dataset, compare the output from your script with the 

output from randomForest(). 

6. Based on your script in 5, replace the decision tree model with 

logistic regression model, to generate a “random forest of logistic 

regression” model. Compare its performance with random forest on 

some datasets you have worked on. 
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CHAPTER 5: PERFORMANCE                  
CROSS VALIDATION AND OOB  

 

 

 

 

 

I. Overview 

Chapter 5 is about “Performance”. This is often a concept that seems to 

be self-evident, and therefore, ignored by people to give further consideration. 

A model performs well – what does that mean anyway?  

For example, let’s consider the prediction of a rare disease. By statistics it 

has been known that only 0.001% of the population of the United States have 

this disease. The Center of Disease Control (CDC) now hires a data analytics 

expert to build a model, and it is said that the model can achieve a prediction 

accuracy as high as 90%. Isn’t this a good model? However, it is easy to beat 

this performance, if we consider a very trivial model that simply predicts all 

the upcoming cases as negative (no disease). Wouldn’t this trivial model 

achieve a prediction accuracy as high as 99.999%? 

Now let’s look at another example. Figure 5.1 shows three models to fit 

the same dataset that has two classes of data points. The first model is a linear 

model (𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 ) with a straight line as the decision 
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boundary. Obviously, this model has its inherent limitation such that many 

data points have to be misclassified with a linear line. To add in some 

curvature into the decision boundary justified by the nonlinear shape of the 

two classes’ boundaries, some second order terms and an interaction term of 

the two predictors are introduced to the model (𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2), giving rise to the model shown in the 

middle panel of Figure 5.1. While this improved model still could not classify 

the two classes completely, more interaction terms defined on the predictors 

are introduced into the model ( 𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 +

𝛽22𝑥2
2 + 𝛽12𝑥1𝑥2 + 𝛽112𝑥1

2𝑥2 + 𝛽122𝑥1𝑥2
2 +⋯ ). As shown in the right 

panel of Figure 5.1, this model can achieve 100% of prediction accuracy. 

 

 

Figure 5.1: Three models to fit a dataset 

 

The three models in Figure 5.1, from left to right, illustrates “underfit”, 

“good fit”, and “overfit”, respectively. The underfit model, apparently, fails 

to incorporate something systematical in the dataset to help classify the two 

classes. The overfit model allows the noises to affect the model. Noises, by 

definition, only happen by accident. While the model, by definition, is to 

generalize the constancy of the data rather than its unrepeatable randomness. 

A dataset could be randomly generated, but the mechanism of generating the 

randomness is the constancy, as revealed in many phenomena such as 

Brownian motion. Thus, the model in the middle panel of Figure 5.1 seems 
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to be able to maintain a balance, using the structural constancy in the data to 

form the model, while resisting the suspicious noises in the data. 

A similar study could be conducted on regression problems. As we have 

mentioned in Chapter 2, the metric R-squared is used to measure the 

goodness-of-fit of the regression model on training data. Look at the 

definition of the R-squared, 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
. 

Here, SST is the total sum of squares, SSE is the residual sum of squares, 

and it is known that SST-SSE is the explained sum of squares by the model. 

Thus, 𝑅2  higher the better, meaning more variance in the data could be 

explained by the model. However, on the other hand, we can see that SST is 

always fixed, while SSE could only decrease if more variables are put into the 

model even if these new added variables have no relationship with the 

outcome variable.  

Further, the R-squared is compounded by the variance of predictors as 

well. As the underlying regression model is 

𝑌 = 𝛽𝑋 + 𝜖, 

the variance of 𝑌, 𝑣𝑎𝑟(𝑌) = 𝛽2𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝜖). The R-squared takes the 

form as 

R-squared=
𝛽2𝑣𝑎𝑟(𝑋)

𝛽2𝑣𝑎𝑟(𝑋)+𝑣𝑎𝑟(𝜖)
. 

Thus, it seems that R-squared is not only impacted by how well 𝑋 can 

predict 𝑌, but also by the variance of 𝑋 as well. 

Thus, the drawback of using R-squared is that it doesn’t account for 

model complexity. The adjusted R-squared was developed to provide a 

remedy for this. Some other criteria such as the AIC and BIC were also 

developed which have a good balance between the model fit (just like R-
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squared) and model complexity (i.e., how many predictors are used in the 

model). 

 

II. Cross-Validation 

II.1 Rationale and Formulation 

The examples shown above collectively point out the complexity of 

defining the performance of a model and the danger of evaluating the 

performance of a model using training data. To solve this problem, a 

common strategy is to look at multiple dimensions of the performance of a 

model, and use cross-validation to obtain the performance metrics on a 

validation dataset that is not used in model training. The ideal situation is that, 

there is a training dataset to train the model and an independent testing 

dataset to validate the model. The testing dataset should not be available 

when training the model, which is the key for validation purpose. Thus, in 

training the model with a given dataset, we need to try our best to make sure 

the model can perform well on the testing dataset. Cross-validation serves 

this purpose to train the model without accessibility to a testing dataset. The 

only information that the cross-validation uses, which is really an assumption, 

is that the testing dataset and the training dataset are randomly generated by 

the same distribution. With a given dataset to train the model, the cross-

validation techniques mimic the ideal situation, aim to predict the model’s 

success on the unseen testing datasets as its ultimate goal.  

 

II.2 Theory/Method 

The first approach, probably the simplest one, is the “hold-out” method. 

With a given dataset, the hold-out method further divides the given dataset 

into two parts, a training dataset and a testing dataset. Then, the model is 

trained on the training dataset. Its performance is evaluated on the testing 

dataset. Note that, when deciding on the final model that will be used on the 

testing dataset to obtain its performance, the testing dataset could not be used 
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to guide the model selection on the training stage. In other words, the testing 

dataset is simply for evaluation only.   

 

 
Figure 5.2: The hold-out method 

 

 

Figure 5.3: The random sampling method 

 

 
Figure 5.4: The K-fold cross-validation method (here, K=4) 

 

The hold-out method is simple but is criticized for its one-time division 

of the dataset into two parts, which maybe prone to random errors. Thus, 

the random sampling method suggests to repeat this division process many 

times, i.e., as shown in Figure 5.3, the process is repeated 3 times. For each 

time, the model training and selection only use the training dataset, and the 
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model evaluation only uses the testing dataset. The performance of the model 

on the three experiments could be reported either in average or in a boxplot 

that shows both the average performance and its variance.  

Somehow like a mix of the random sampling method and the hold-out 

method, the K-fold cross-validation method suggests to first divide the 

dataset into K folds, and then, train the model using K-1 folds of the dataset 

and test the model using the remaining fold. This process could be repeated 

K times. The performance of the model on the experiments could be 

reported either in average or in a boxplot that shows both the average 

performance and its variance. 

 

II.3 R Lab 

The R lab in this section is built on the script provided in malanor.net1. 

Here, we simulate a simple dataset with one predictor and outcome variable. 

We use the ns() function to simulate the relationship between the two 

variables, which can generate the B-spline basis matrix for natural cubic 

splines. The nice merit of using this method is that the relationship between 

the two variables should be more complex than linear, but the complexity is 

controlled by the degree of freedom (df) parameter, i.e., the larger the df, the 

more complex the relationship. Thus, the complexity of the relationship is 

quantitatively characterized on a continuum.  

# Write a nice simulator to generate dataset with one predictor a
nd one outcome 
# from a polynomial regression model 
seed <- rnorm(1) 
set.seed(seed) 
gen_data <- function(n, coef, v_noise) { 
  eps <- rnorm(n, 0, v_noise) 
  x <- sort(runif(n, 0, 100)) 
  X <- cbind(1,ns(x, df = (length(coef) - 1))) 
  y <- as.numeric(X %*% coef + eps) 
  return(data.frame(x = x, y = y)) 
} 

                                                      
1  http://www.milanor.net/blog/cross-validation-for-predictive-analytics-using-

r/ 
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The dataset that is generated by the R code showing above is presented 

in Figure 5.5, as the scattered data points. 

 

Figure 5.5: The simulated data from a nonlinear regression model with 

B-spline basis matrix (df = 4), and various fitted models with different 

degree of freedoms 

 

We then fit the data with a variety of models, starting from df =1 

(corresponds to the linear model) to df =20.  

# Fit the data using different models with different degrees of f
reedom (df) 
# install.packages("splines") 
require(splines) 

## Loading required package: splines 

# Simulate one batch of data, and see how different model fits wi
th df from 1 to 50 
 
n_train <- 100 
coef <- c(-0.68,0.82,-0.417,0.32,-0.68) 
v_noise <- 0.2 
n_df <- 20 
df <- 1:n_df 
tempData <- gen_data(n_train, coef, v_noise) 
 
x <- tempData[, "x"] 
y <- tempData[, "y"] 
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fit <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df = degf))) 
 
 
# Plot the data 
x <- tempData$x 
X <- cbind(1, ns(x, df = (length(coef) - 1))) 
y <- tempData$y 
plot(y ~ x, col = "gray", lwd = 2) 
lines(x, X %*% coef, lwd = 3, col = "black") 
lines(x, fitted(fit[[1]]), lwd = 3, col = "darkorange") 
lines(x, fitted(fit[[4]]), lwd = 3, col = "dodgerblue4") 
# lines(x, fitted(fit[[10]]), lwd = 3, col = "darkorange") 
lines(x, fitted(fit[[20]]), lwd = 3, col = "forestgreen") 
legend(x = "topleft", legend = c("True function", "Linear fit (df
 = 1)", "Best model (df = 4)", "Overfitted model (df = 15)", 
                                 "Overfitted model (df = 20)"), l
wd = rep(3, 4), col = c("black", "darkorange", "dodgerblue4", 
                                                                 
                        "forestgreen"), text.width = 32, cex = 0.
85) 

As shown in Figure 5.5, the linear model obviously underfits the data as 

it lacks the flexibility to characterize the complexity sufficiently. The model 

that has df =20 overfits the data, evidenced by its complex shape with many 

change points, up and downs. As we know that the underlying true model is 

smooth, the model with df=20 tries too hard to fit the local patterns that 

were only induced by noise. 

Note that, in this example, we have known that the true df is 4, which 

helps us to recognize the overfitted and underfitted models. In reality, we 

don’t have this knowledge, so it is dangerous to keep increasing the model 

complexity to aggressively pursue the accuracy performance on the training 

data. To see the danger, let’s do another experiment. 

First, we use the following R code to generate test data from the same 

distribution of the training data.  

# Generate test data from the same model 
n_test <- 50 
xy_test <- gen_data(n_test, coef, v_noise) 
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Then, we fit the same set of models from linear to df=20 using the 

training dataset. And we compute the prediction errors of these models using 

the training dataset and testing dataset separately. 

# Compute the training and test errors for each model 
mse <- sapply(fit, function(obj) deviance(obj)/nobs(obj)) 
pred <- mapply(function(obj, degf) predict(obj, data.frame(x = xy
_test$x)),  
                      fit, df) 
te <- sapply(as.list(data.frame(pred)), function(y_hat) mean((xy_
test$y - y_hat)^2)) 

 

Figure 5.6: Prediction errors of the models (from df=0 to df=20) on the 

training dataset and testing data 

 

The following R code is used to draw the Figure 5.6. 

# Plot the errors 
plot(df, mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Predi
ction error",  
     xlab = "The degrees of freedom (logged) of the model", ylim 
= c(0.9*min(mse), 1.1*max(mse)), log = "x") 
 
lines(df, te, lwd = 2, col = "orange3") 
 
points(df[1], mse[1], col = "palegreen3", pch = 17, cex = 1.5) 
points(df[1], te[1], col = "palegreen3", pch = 17, cex = 1.5) 
points(df[which.min(te)], mse[which.min(te)], col = "darkorange",
 pch = 16,  
       cex = 1.5) 
points(df[which.min(te)], te[which.min(te)], col = "darkorange", 
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pch = 16,  
       cex = 1.5) 
points(df[15], mse[15], col = "steelblue", pch = 15, cex = 1.5) 
points(df[15], te[15], col = "steelblue", pch = 15, cex = 1.5) 
legend(x = "center", legend = c("Training error", "Test error"), 
lwd = rep(2, 2),  
       col = c(gray(0.4), "orange3"), text.width = 0.3, cex = 1.
2) 

As we can see from Figure 5.6, the prediction error on the training dataset 

keeps decreasing with the increase of the df. This is consistent with our 

theory, and it is important to keep in mind that this triumph of model 

complexity doesn’t really mean what it seems. It only indicates a universal 

phenomenon that a more complex model can fit the data better. On the other 

hand, we could observe that the testing error curve shows a U-shape curve, 

indicating an optimal model could be identified in the examined spectrum of 

model complexity.  

 

Figure 5.7: Prediction errors of the models (from df=0 to df=20) on the 

training dataset and testing data of 100 replications. The two highlighted 

curves represent the mean curves of the 100 replications of the training and 

testing error curves, respectively 
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The following R code repeats this experiment 100 times and present the 

results in Figure 5.7.  

# Repeat the above experiments in 100 times 
n_rep <- 100 
n_train <- 50 
coef <- c(-0.68,0.82,-0.417,0.32,-0.68) 
v_noise <- 0.2 
n_df <- 20 
df <- 1:n_df 
xy <- res <- list() 
xy_test <- gen_data(n_test, coef, v_noise) 
for (i in 1:n_rep) { 
  xy[[i]] <- gen_data(n_train, coef, v_noise) 
  x <- xy[[i]][, "x"] 
  y <- xy[[i]][, "y"] 
  res[[i]] <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df = de
gf))) 
} 
 
 
# Compute the training and test errors for each model 
pred <- list() 
mse <- te <- matrix(NA, nrow = n_df, ncol = n_rep) 
for (i in 1:n_rep) { 
  mse[, i] <- sapply(res[[i]], function(obj) deviance(obj)/nobs(o
bj)) 
  pred[[i]] <- mapply(function(obj, degf) predict(obj, data.frame
(x = xy_test$x)),  
                      res[[i]], df) 
  te[, i] <- sapply(as.list(data.frame(pred[[i]])), function(y_ha
t) mean((xy_test$y -  
                                                                 
           y_hat)^2)) 
} 
 
# Compute the average training and test errors 
av_mse <- rowMeans(mse) 
av_te <- rowMeans(te) 
 
# Plot the errors 
plot(df, av_mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Pr
ediction error",  
     xlab = "The degrees of freedom (logged) of the model", ylim 
= c(0.7*min(mse), 1.4*max(mse)), log = "x") 
for (i in 1:n_rep) { 
  lines(df, te[, i], col = "lightyellow2") 
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} 
for (i in 1:n_rep) { 
  lines(df, mse[, i], col = gray(0.8)) 
} 
lines(df, av_mse, lwd = 2, col = gray(0.4)) 
lines(df, av_te, lwd = 2, col = "orange3") 
points(df[1], av_mse[1], col = "palegreen3", pch = 17, cex = 1.5) 
points(df[1], av_te[1], col = "palegreen3", pch = 17, cex = 1.5) 
points(df[which.min(av_te)], av_mse[which.min(av_te)], col = "dar
korange", pch = 16,  
       cex = 1.5) 
points(df[which.min(av_te)], av_te[which.min(av_te)], col = "dark
orange", pch = 16,  
       cex = 1.5) 
points(df[20], av_mse[20], col = "steelblue", pch = 15, cex = 1.
5) 
points(df[20], av_te[20], col = "steelblue", pch = 15, cex = 1.5) 
legend(x = "center", legend = c("Training error", "Test error"), 
lwd = rep(2, 2),  
       col = c(gray(0.4), "darkred"), text.width = 0.3, cex = 0.8
5) 

Next, let’s see how well the cross-validation could help to overcome the 

danger of overfitting. Let’s consider the scenario that only the 100 samples 

are provided to us for both model training and testing. Thus, we use the 10-

folder cross-validation on the 100 samples, using the following R code, to 

train the model. 

# Cross-validation 
set.seed(seed) 
 
n_train <- 100 
xy <- gen_data(n_train, coef, v_noise) 
x <- xy$x 
y <- xy$y 
 
fitted_models <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df =
 degf))) 
mse <- sapply(fitted_models, function(obj) deviance(obj)/nobs(ob
j)) 
 
n_test <- 10000 
xy_test <- gen_data(n_test, coef, v_noise) 
pred <- mapply(function(obj, degf) predict(obj, data.frame(x = xy
_test$x)),  
               fitted_models, df) 
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te <- sapply(as.list(data.frame(pred)), function(y_hat) mean((xy_
test$y - y_hat)^2)) 
 
n_folds <- 10 
folds_i <- sample(rep(1:n_folds, length.out = n_train)) 
cv_tmp <- matrix(NA, nrow = n_folds, ncol = length(df)) 
for (k in 1:n_folds) { 
  test_i <- which(folds_i == k) 
  train_xy <- xy[-test_i, ] 
  test_xy <- xy[test_i, ] 
  x <- train_xy$x 
  y <- train_xy$y 
  fitted_models <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df
 = degf))) 
  x <- test_xy$x 
  y <- test_xy$y 
  pred <- mapply(function(obj, degf) predict(obj, data.frame(ns
(x, df = degf))),  
                 fitted_models, df) 
  cv_tmp[k, ] <- sapply(as.list(data.frame(pred)), function(y_ha
t) mean((y -  
                                                                 
          y_hat)^2)) 
} 
cv <- colMeans(cv_tmp) 

 

Figure 5.8: Prediction errors of the models (from df=0 to df=20) on the 

training dataset without cross-validation, on the training dataset using 10-

folder cross-validation, and testing data of 50 samples.  
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Then we can visualize the result in Figure 5.8. Note that, in Figure 5.8, we 

overlay the result of the 10-folder cross-validation (based on the 100 samples) 

with the prediction error on a separate testing dataset (extra 50 samples) to 

get an idea how close the 10-folder cross-validation can match the ideal case 

with an extra batch of testing data.  

# install.packages("Hmisc") 
require(Hmisc) 

plot(df, mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Predi
ction error",  
     xlab = "The degrees of freedom (logged) of the model", main 
= paste0(n_folds,  
                                                                 
                  "-fold Cross-Validation"), ylim = c(0.8*min(ms
e), 1.2*max(mse)), log = "x") 
lines(df, te, lwd = 2, col = "orange3", lty = 2) 
cv_sd <- apply(cv_tmp, 2, sd)/sqrt(n_folds) 
errbar(df, cv, cv + cv_sd, cv - cv_sd, add = TRUE, col = "steelbl
ue2", pch = 19,  
       lwd = 0.5) 
lines(df, cv, lwd = 2, col = "steelblue2") 
points(df, cv, col = "steelblue2", pch = 19) 
legend(x = "topright", legend = c("Training error", "Test error",
 "Cross-validation error"),  
       lty = c(1, 2, 1), lwd = rep(2, 3), col = c(gray(0.4), "dar
kred", "steelblue2"),  
       text.width = 0.4, cex = 0.85) 

As shown in Figure 5.8, the 10-folder cross-validation could generate fair 

evaluation of the models just like an independent unseen testing dataset. 

Although its estimation of the error is smaller than the error estimation on 

the testing dataset, it could capture the change point of model complexity 

beyond which the model starts to overfit the data. Thus, it could be used to 

identify a good model that fits the data well, without overfitting.  

Now let’s apply the idea of 10-folder cross-validation on the AD data, for 

building a linear regression model with the demographic variables.  

#### Dataset of Alzheimer's Disease  
#### Objective: prediction of diagnosis  
# filename 
AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 
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# fit a model with demographics only 
lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD) 
summary(lm.AD_demo) 

n_folds <- 10 
folds_i <- sample(rep(1:n_folds, length.out = dim(AD)[1])) 
cv_tmp <- matrix(NA, nrow = n_folds, 1) 
cv_err <- matrix(NA, nrow = 50*n_folds,2) 
for (k in 1:n_folds) { 
  test_i <- which(folds_i == k) 
  train_xy <- AD[-test_i, ] 
  test_xy <- AD[test_i, ] 
  y <- test_xy$MMSCORE 
  lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = tr
ain_xy) 
  pred <- predict(lm.AD_demo,test_xy) 
  cv_tmp[k] <- mean((y - pred )^2) 
  temp <- y - pred 
  cv_err[(1+((k-1)*50)):(k*50),1] = rep(k,50) 
  cv_err[(1+((k-1)*50)):(k*50),2] <- temp[1:50] 
} 

 

 

Figure 5.9: Prediction errors of the linear regression model using 10-folder 

cross-validation 

 

We can use the boxplot to draw the distribution of the prediction errors 

(evaluated by MSE) collected by the 10-folder cross-validation, shown in 

Figure 5.9: 
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library(ggplot2) 
p <- ggplot(data.frame(cv_tmp),aes(x=factor(""),y=cv_tmp))+geom_b
oxplot()+ xlab("") ## box plot 
p <- p + labs(title="MSE of lm.AD_demo by 10-folder Cross Validat
ion") 
print(p) 

Further, while it is not usual in applications to see the prediction errors 

within the folders, here, it is of interest to present this intermediate result to 

gain a visual understanding of cross-validation. The R code below draws the 

boxplots of the prediction errors of the 10 folders, shown in Figure 5.10. 

# Visualize the distributions of the prediction errors in the fol
ders 
cv_err <- data.frame(cv_err) 
names(cv_err) = c("Folder","Error") 
ggplot(data = cv_err, aes(x = Folder, y = Error)) +  
  geom_boxplot(aes(colour=factor(Folder)), fill=NA) +  
  geom_point(aes(color = factor(Folder))) 

 

 

Figure 5.10: Prediction errors of the linear regression model using 10-

folder cross-validation; each boxplot corresponds to one folder 
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II.4 Remarks 

More about cross-validation: Usually, there is a relationship between 

the performance of the model on training dataset and its performance on 

testing dataset, as shown in Figure 5.11. Note that this relationship is 

theoretical, but has very high relevance with real applications. In our 

experiments, as shown in Figures 5.6 and 5.7, we have seen this relationship. 

This relationship predicts that, while the performance on the training data 

will decrease if we increase the model complexity, at a certain point, the gain 

on performance by increasing model complexity will stop. Beyond this point, 

the performance would be worse. Thus, a model that has a good performance 

on the training data and a reasonable complexity is likely to be among the 

best models that will perform well on the testing data (unseen).  

 

 
Figure 5.11: A theoretical relationship between the performance of the 

model on training dataset and its performance on testing dataset 

 

The ROC curve: While cross-validation is useful for estimating the 

model’s performance on unseen testing data, it still needs evaluation metrics 

to evaluate the model’s performance. In some applications such as the rare 

disease example mentioned earlier in this chapter, how to evaluate the 

performance of a model itself could be a complex issue.  

There have been many performance metrics developed in the literature. 

An important one, for classification problem, is the ROC curve. As we have 
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seen the limitation of merely using accuracy as the performance metric of a 

classification model, the ROC has been commonly used as a better metric. 

The ROC stands for Receiver Operating Characteristics. As in a binary 

classification problem that there are two classes, we often care about 

accuracies of prediction on both classes. If the classification problem is in a 

medical application, one class represents disease (positive) while another one 

represents normal (negative), then we may further name the correct 

prediction on a positive case as true positive (TP) and name the correct 

prediction on a negative case as true negative (TN). Correspondingly, we 

can define the false positive (FP) as incorrect prediction on a positive case 

and false negative (FN) as incorrect prediction on a negative case. This is 

summered in the following table: 

 

Table 5.1: The confusion matrix 

The confusion 

matrix 

Reality 

Positive Negative 

M
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d
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True positive (TP) False positive (FP) 

N
eg
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e 

False negative 

(FN) 

True negative 

(TN) 

 

Now, recall that, in a logistic regression model, before we reach the 

endpoint of the model that is binary prediction, we obtain the intermediate 

result 𝑝(𝒙) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1

)
. Then, a cut-off value (e.g., 0.5) is used to 

classify the cases whose 𝑝(𝒙) is larger than the cut-off value as one class and 
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otherwise as another class. This means that, for each cut-off value, we can 

obtain a confusion matrix with different values on the TP and FP. This is 

shown in Figure 5.12. 

 

 

Figure 5.12: For a logistic regression model of two classes, the logistic 

model can produce the intermediate results 𝑝(𝒙) for the cases of both 

classes. (a) shows the distributions of 𝑝(𝒙) of both classes and a particular 

cut off value; (b) shows the corresponding confusion matrix; (c) shows the 

ROC curve that synthesizes all the scenarios of all cut off values 

 

As we can see from Figure 5.12, the ROC curve is a succinct way to 

synthesizes all the scenarios of all cut-off values. Thus, it provides a more 

holistic way to evaluate a model (actually, more about to evaluate the potential 

of a model). A model that lacks potential for prediction will be close to the 

45o line, representing random guess on both classes. A better model will 

show a ROC curve that is closer to the upper left corner point.  

Based on ROC, a metric that is named the AUC (the area under the curve) 

is proposed to summarize the ROC curve of a model. The higher the AUC, 

the better the model. 

In what follows we show how to derive these performance metrics using 

the logistic regression model. First, let’s build a logistic regression model 

using the AD data as what we have done in Chapter 3.  
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# ROC and more performance metrics of logistic regression model 
# Load the AD dataset 
AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 

# Split the data into training and testing sets 
n = dim(AD)[1] 
n.train <- floor(0.8 * n) 
idx.train <- sample(n, n.train) 
AD.train <- AD[idx.train,] 
AD.test <- AD[-idx.train,] 
 
# Automatic selection of the model 
logit.AD.full <- glm(DX_bl ~ ., data = AD.train[,c(1:16)], family
 = "binomial") 
logit.AD.final <- step(logit.AD.full, direction="both", trace = 
0) 
summary(logit.AD.final) 

Then, we can use the function, confusionMatrix() from the R package 

“e1071” to derive the performance metrics: 

# install.packages("e1071") 
require(e1071) 

require(caret) 

# Prediction scores 
pred = predict(logit.AD.final, newdata=AD.test,type="response") 
confusionMatrix(data=factor(pred>0.5), factor(AD.test[,1]==1)) 

The results are shown in below: 

## Confusion Matrix and Statistics 
##  
##           Reference 
## Prediction FALSE TRUE 
##      FALSE    48    7 
##      TRUE      7   42 
##                                            
##                Accuracy : 0.8654           
##                  95% CI : (0.7845, 0.9244) 
##     No Information Rate : 0.5288           
##     P-Value [Acc > NIR] : 3.201e-13        
##                                            
##                   Kappa : 0.7299           
##  Mcnemar's Test P-Value : 1                
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##                                            
##             Sensitivity : 0.8727           
##             Specificity : 0.8571           
##          Pos Pred Value : 0.8727           
##          Neg Pred Value : 0.8571           
##              Prevalence : 0.5288           
##          Detection Rate : 0.4615           
##    Detection Prevalence : 0.5288           
##       Balanced Accuracy : 0.8649           
##                                            
##        'Positive' Class : FALSE            
##  

The ROC curve could be drew using the R Package “ROCR”: 

# Generate the ROC curve using the testing data 
# Compute ROC and Precision-Recall curves 
require('ROCR') 

linear.roc.curve <- performance(prediction(pred, AD.test[,1]), 
                                 measure='tpr', x.measure='fpr' ) 
plot(linear.roc.curve,  lwd = 2, col = "orange3",  
     main = "Validation of the logistic model using testing data
") 

The ROC curve is shown in Figure 5.13. 

 

Figure 5.13: ROC curve of the logistic regression model 
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III. Out-of-bag error in Random Forest 

III.1 Rationale and Formulation 

The out-of-bag (OOB) error in a random forest model provides a 

computationally convenient approach to evaluate the model without using a 

testing dataset, neither a cross-validation procedure. Recall that, for a random 

forest model with 𝐾 trees, each tree is built on a bootstrapped dataset from 

the original training set 𝑆. There are totally 𝐾 bootstrapped datasets, denoted 

as 𝐵1,𝐵2, … , 𝐵𝐾.  

 

 

Figure 5.14: The framework of random forest 

 

As the size of each bootstrapped dataset is the same size (denoted as 𝑁) 

as the original training data, and each data point in the bootstrapped dataset 

is selected independently from other data points, therefore, the probability of 

a data point from the training data is missing from a bootstrapped dataset is 

(1 −
1

𝑁
)
𝑁

. 

When 𝑁 is sufficiently large, we can have 

𝑙𝑖𝑚𝑁→∞ (1 −
1

𝑁
)
𝑁
= 𝑒−1 ≈ 0.37. 
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Therefore, roughly 37% of the data points from 𝑆 are not contained in 

any bootstrapped dataset 𝐵𝑖 , and thus, not used for training tree 𝑖. These 

excluded data points are referred as the out-of-bag samples for the 

bootstrapped dataset 𝐵𝑖  and tree 𝑖 . Note that when 𝑁  is small, the 

probability of a data point missing from a bootstrapped dataset is smaller, 

e.g., the probability becomes 0 when 𝑁 = 1, and 1/4 when  𝑁 = 2.  

As there are 37% of probability that a data point is not used for training 

a tree, we can infer that, a data point is not used for training about 37% of 

the trees. Therefore, for each data point, in theory, there are 37% of trees 

trained without this data point. These trees can be used to predict on this 

data point, which can be considered as testing an unseen data point. The out-

of-bag error estimation can then be calculated by aggregating the out-of-bag 

testing error of all the data points. The out-of-bag error can be calculated 

after random forests are built, and are significantly less computationally than 

cross-validation. Note that the out-of-bag estimates are calculated by 37% of 

the trees in the random forest model, therefore, it is expected that the full 

random forest model with 𝐾 trees would perform better on any data point 

than a subset of trees. However, as the performance of the random forest 

model stabilizes as the number of trees increases, the difference may be small 

when 𝐾 is sufficiently large.  

Suppose that we have a training dataset of 5 instances (IDs as 1,2,3,4,5). 

Three trees are built using three bootstrapped datasets, as shown in the Table 

5.2.  

 

Table 5.2: Three trees and the corresponding bootstrapped datasets 

Bootstrap Tree 

1,1,4,4,5 1 

2,3,3,4,4 2 

1,2,2,5,5 3 
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Then, we can estimate the out-of-bag (OOB) errors as shown in Table 

5.3 (the true classes of the instances are shown in the top row): 

 

Table 5.3: The out-of-bag (OOB) errors 

Tree Training data 1 (C1) 2 (C2) 3 (C2) 4 (C1) 5 (C2) 

1 1,1,4,4,5  C1 C2   

2 2,3,3,4,4 C1    C2 

3 1,2,2,5,5   C2 C1  

 

We can see that, as the data instance (ID = 1) is not used in training Tree 

2, we can use Tree 2 to predict on this data instance, and we see that it 

correctly predicts the class as C1. Similarly, Tree 1 is used to predict on data 

instance (ID=2), and the prediction is wrong. Finally, we can see that the 

overall out-of-bag (OOB) error is 1/6. 

 

III.3 R Lab 

We apply random forests to the AD data set, with different number of 

minimum node sizes. The out-of-bag (OOB) error rates are obtained. 

Separately, we use half of the data for training random forests and use the 

other half to get the testing error (referred to as the validation error). This is 

repeated 50 times and we can get a distribution of the validation error. Lastly, 

we also get the training error by building random forests on the data set and 

use the same data set for testing. Three types of error rates are plotted in 

Figure 5.15. Note there is only one data point at each node size for OOB 

error and training error, which are represented as one line instead a range. It 

can be seen while the OOB error rates are reasonably aligned with the 

validation error rates, the training error rates are much smaller. 

library(dplyr) 
library(tidyr) 
library(ggplot2) 
require(randomForest) 
set.seed(1) 
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theme_set(theme_gray(base_size = 15)) 
library(RCurl) 
data <- read.csv(text = getURL("https://raw.githubusercontent.com
/shuailab/ind_498/master/resource/data/AD.csv")) 
 
target_indx <- which(colnames(data) == "DX_bl") 
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x])) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 
 
para.v <- c(1, 50, 100, 150, 200) 
results <- NULL 
 
# OOB error 
for (ipara in para.v) { 
    rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = data) 
 # nodesize = inodesize 
    results <- rbind(results, c("OOB_Error", ipara, mean(rf$err.r
ate[, "OOB"]))) 
} 
 
# Validation error 
for (ipara in para.v) { 
    for (i in 1:50) { 
        train.ix <- sample(nrow(data), floor(nrow(data)/2)) 
        rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = da
ta[train.ix,  
            ]) 
        pred.test <- predict(rf, data[-train.ix, ], type = "class
") 
        this.err <- length(which(pred.test != data[-train.ix, ]$D
X_bl))/length(pred.test) 
        results <- rbind(results, c("Validation_Error", ipara, th
is.err)) 
    } 
} 
 
# Training error 
for (ipara in para.v) { 
    rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = data) 
 # nodesize = inodesize 
    pred <- predict(rf, data, type = "class") 
    this.err <- length(which(pred != data$DX_bl))/length(pred) 
    results <- rbind(results, c("Training_Error", ipara, this.er
r)) 
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} 
 
colnames(results) <- c("type", "min_node_size", "error") 
results <- as.data.frame(results) 
results$error = as.numeric(as.character(results$error)) 
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size)) 
ggplot() + geom_boxplot(data = results, aes(y = error, x = min_no
de_size, color = type)) +  
    geom_point(size = 3) 

 

 

Figure 5.15: Comparison of different types error rates 

 

Let's also investigate the impact of the number of trees (ntree) on OOB 

errors. In particular, we compare 50 trees with 500 trees, with the OOB errors 

plotted in Figure 5.16. As expected, the OOB errors from 50 trees are clearly 

larger than the errors from 500 trees. This is because fewer trees are used in 

the random forests with 50 trees. 

para.v <- c(1, 50, 100, 150, 200) 
results <- NULL 
 
# OOB error with 500 trees 
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for (ipara in para.v) { 
    rf <- randomForest(DX_bl ~ ., nodesize = ipara, ntree = 500, 
data = data)  # nodesize = inodesize 
    results <- rbind(results, c("OOB_Error_500trees", ipara, mean
(rf$err.rate[,  
        "OOB"]))) 
} 
 
# OOB error with 50 trees 
for (ipara in para.v) { 
    rf <- randomForest(DX_bl ~ ., nodesize = ipara, ntree = 50, d
ata = data)  # nodesize = inodesize 
    results <- rbind(results, c("OOB_Error_50trees", ipara, mean
(rf$err.rate[,  
        "OOB"]))) 
} 
colnames(results) <- c("type", "min_node_size", "error") 
results <- as.data.frame(results) 
results$error = as.numeric(as.character(results$error)) 
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size)) 
ggplot(data = results, aes(y = error, x = min_node_size, fill = t
ype)) + geom_bar(stat = "identity",  
    position = "dodge") 

 

 

Figure 5.16: OOB error rates from random forests with different number 

of trees 
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IV. Exercises 

Data analysis 

1. Find ten classification datasets from the UCI data repository or R 

datasets. Using these datasets, conduct experiments to see if the 

cross-validation method on training data can provide an 

approximation of the testing error on a testing data, as shown in 

Figure5.8.  

2. Using the datasets you picked up in 1, use cross-validation to select 

the best logistic regression model, the best decision tree model, and 

the best random forest model. Compare the models. 

3. Using these datasets, build random forest models and compare the 

OOB error rates from the random forest models with 10-folder 

cross-validation error.  

 

Programming  

In the book1 by Prof. Cosma Rohilla Shalizi, an interesting experiment is 

proposed to show another disadvantage of the concept R-squared. Three 

simple datasets are simulated via: 

1. Simulate 100 data points of predictor 𝑋 from a uniform distribution 

𝑈𝑛𝑖𝑓(0,1) ; then, simulate 100 corresponding values of response 

variable 𝑌 from 𝑁(√𝑋, 0.052). 

2. Simulate 100 data points of predictor 𝑋  from 𝑁(0.5, 0.12); then, 

simulate 100 corresponding values of response variable 𝑌  from 

𝑁(√𝑋, 0.052). 

                                                      
1 Shalizi, C.R. Advanced data analysis from an elementary point of view. Book Manuscript: 

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf.  
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3. Simulate 100 data points of predictor 𝑋 from a uniform distribution 

𝑈𝑛𝑖𝑓(2,3) ; then, simulate 100 corresponding values of response 

variable 𝑌 from 𝑁(√𝑋, 0.052). 

Built three regression models on the three datasets. Comment on the R-

squared of the three fitted models (which aim to fit the same regression 

model anyway). 



 

 

 

 

 

 

CHAPTER 6: DIAGNOSIS      
RESIDUALS  AND HETEROGENEITY  

 

 

 

 

 

I. Overview 

Chapter 6 is about “Diagnosis”. Diagnosis, in one sense, is to see if the 

assumptions that determine the theoretical validity of the model fit the 

empirical characteristics of the data. For example, when we use linear 

regression model, we use a whole set of subsequent methods such as the t-

test and F-test to gain more understanding of the model, while these methods 

are built on the assumptions such as the normality of the errors. Identification 

of assumption violation certainly indicates some concerns, limiting the 

strength of our conclusion, but doesn’t mean the model is not useful. The 

model is still useful, telling part of the truth. Actually, the model, together 

with the potential gap between the theoretical assumptions and the empirical 

data characteristics, should be taken as a whole, that jointly form the analytics 

practice. Many diagnostic tools are developed for maintaining a critical 

attitude towards the models which are essentially artificial 

representations/approximations of the reality, yet there is a big difference 

between being critical and being dismissive. An even more radical assertion 
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was once pointed out in the seminar book1 that even a model that doesn’t fit 

generates knowledge, revealed not by the failed model but by the misfit of 

the model as a fact.  

 

II. Residual Analysis in Regression 

In this chapter, we take a pragmatism approach to present some of these 

concepts, by combining the background, theory, and R lab into one section.  

Residual analysis: Diagnosis of regression models have been theorized 

and articulated in a few monographs. Many interesting concepts have been 

developed in the literature, such as the multicollinearity, 

heteroscedasticity, cook’s distance, leverage, and Q-Q plot, to name a 

few.  

Let’s use the final regression model we identified in Chapter 2 for an 

example. The following R code reproduces this final model: 

AD <- read.csv('AD_bl.csv', header = TRUE) 
AD$ID = c(1:dim(AD)[1]) 
str(AD) 

# fit a full-scale model 
AD_full <- AD[,c(1:16)] 
lm.AD <- lm(MMSCORE ~ ., data = AD_full) 
summary(lm.AD) 

# Automatic model selection 
lm.AD.F <- step(lm.AD, direction="backward", test="F") 

The returned final model is summarized by calling the function summary().  

## MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373 + rs61093
2 +  
##     rs3764650 + rs3865444 
##  
##             Df Sum of Sq    RSS    AIC F value    Pr(>F)     
## <none>                   1537.5 581.47                       
## - rs3764650  1     7.513 1545.0 581.99  2.4824  0.115750     

                                                      
1 Jaynes, E.T. Probability theory: the logic of science. Cambridge Press, 2003. 
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## - rs744373   1    12.119 1549.6 583.53  4.0040  0.045924 *   
## - rs610932   1    14.052 1551.6 584.17  4.6429  0.031652 *   
## - rs3865444  1    21.371 1558.9 586.61  7.0612  0.008125 **  
## - AV45       1    50.118 1587.6 596.05 16.5591 5.467e-05 *** 
## - PTEDUCAT   1    82.478 1620.0 606.49 27.2507 2.610e-07 *** 
## - HippoNV    1   118.599 1656.1 617.89 39.1854 8.206e-10 *** 
## - FDG        1   143.852 1681.4 625.71 47.5288 1.614e-11 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The R package “ggfortify” provides a nice graphic bundle to show some 

important diagnostic figures.  

# Conduct diagnostics of the model 
# install.packages("ggfortify") 
library("ggfortify") 

autoplot(lm.AD.F, which = 1:6, ncol = 3, label.size = 3) 

 

 

Figure 6.1: Diagnostic figures of regression model on the AD dataset 

 

The diagnostic figures shown in Figure 6.1 are information-rich. One way 

to interpret them is to put them into a contrast with the way they are 
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supposed to be. For example, for the left figure in the first row, which is the 

scatterplot of the residuals versus fitted values of the outcome variable, it is 

supposed to show purely random distributions of the data points. In other 

words, any pattern that shows non-random characteristics, such as the curved 

relationship between the residuals and fitted values, and the unusual parallel 

lines of the data points, indicates deviance from the assumptions such as 

independence of the observations and constancy/homoscedasticity of the 

variance of the errors.  

The Q-Q plot, as the middle figure in the first row, shows violation of the 

normality assumption of the error term. And some particularly violating data 

points such as the data points 282 and 256 are labelled.  

The Cook’s distance shown in the left figure in the second row, shows 

the influential data points that have larger than average influence on the 

parameter estimation. The Cook’s distance of a data point is built on the idea 

of how much change will be induced on the estimated parameters if the data 

point is deleted.  

The leverage of a data point, on the other hand, shows the influence of 

the data point in another way. Mathematically, the leverage of a data point is 

𝜕�̂�𝑖

𝜕𝑦𝑖
, reflecting how sensitive the prediction on the data point by the model is 

decided by the observed outcome value 𝑦𝑖 . In other words, what data point 

will result in high leverage value? For data points that are surrounded by many 

close-by data points, their leverages won’t be large, since the impact of 

removal of them will be compensated by other similar data points in the 

nearby. Thus, we could infer that the data points that sparsely occupy their 

neighbor areas will have large leverages. These data points could either be 

outliers that severely derivate from the linear trend represented by the 

majority of the data points, or could be valuable data points that align with 

the linear trend but lack neighbor data points, and thus, changes on their 

observations will generate a large impact on the predictions on the data points 

nearby their locations. Thus, it is important to note that, a data point that is 
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influential doesn’t necessary imply that it is bad. It only suggests that some 

more in-depth examination of the data point is needed.  

While the information shown in Figure 6.1 is telling, we don’t know how 

bad it is. In other words, we need a baseline version of these figures to 

establish an expectation so we can compare Figure 6.1 with. To do so, we 

can simulate a dataset while all the assumptions of the linear regression model 

are met, to get a sense what these diagnostic figures would look like. The R 

code in below shows how we can simulate a dataset with 100 samples from 

the regression model: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀,  𝜀~𝑁(0,1). 

 

# For comparison, let's simulate data  
# from a model that fits the assumptions 
x1 <- rnorm(100, 0, 1) 
x2 <- rnorm(100, 0, 1) 
beta1 <- 1 
beta2 <- 1 
mu <- beta1 * x1 + beta2 * x2 
y <- rnorm(100, mu, 1) 
lm.XY <- lm(y ~ ., data = data.frame(y,x1,x2)) 
summary(lm.XY) 

We can see that the fitted model fairly reflects the underlying model. 

##  
## Call: 
## lm(formula = y ~ ., data = data.frame(y, x1, x2)) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -2.6475 -0.6630 -0.1171  0.7986  2.5074  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)   0.0366     0.1089   0.336    0.738     
## x1            0.9923     0.1124   8.825 4.60e-14 *** 
## x2            0.9284     0.1159   8.011 2.55e-12 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.088 on 97 degrees of freedom 
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## Multiple R-squared:  0.6225, Adjusted R-squared:  0.6147  
## F-statistic: 79.98 on 2 and 97 DF,  p-value: < 2.2e-16 

 

 

Figure 6.2: Diagnostic figures of regression model on a simulation dataset 

 

Then, we can generate the same set of diagnostic figures. Many interesting 

contrasts could be observed. For example, from the left figure on the first 

row in Figure 6.2, we can see that, different from the one in Figure 6.1, now 

we don’t see any significant non-random statistical pattern. The relationship 

between the residual and fitted values seems to be null. From the QQ-plot, 

we can also see that the normality assumption is held well. On the other hand, 

from the cook’s distance and the leverage plot, some data points are observed 

to be influential just as what we can observe from Figure 6.1. As we know 

that we have simulated the data strictly following the assumptions of the 

linear regression model, this experiment shows that it is normal to expect 

some data points exhibiting abnormality according to the cook’s distance and 

the leverage. 
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# Conduct diagnostics of the model 
library("ggfortify") 
autoplot(lm.XY, which = 1:6, ncol = 3, label.size = 3) 

Multicollinearity analysis: The diagnostic figures shown above are all 

about diagnosis on the data points. This perspective of looking at the dataset 

point by point (vertically) is the conventional way to define model diagnostics. 

There is another perspective which is to look at the dataset variable by 

variable (horizontally).  In regression model, the problem of multicollinearity 

has been well known as a serious problem. Multicollinearity refers to the 

phenomenon that many predictor variables highly correlate with each other, 

resulting in great ambiguity in the model parameter estimation due to the ill 

condition of the matrix  𝐗𝑇𝐗, i.e., small changes on 𝐗 will result in large and 

unpredictable changes on the inverse matrix 𝐗𝑇𝐗, which will eventually result 

in great instability of the parameter estimation in �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀.  

We can do a simple analysis to study this problem of multicollinearity. 

Consider a system that generates the observation following the relationships 

shown in below: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 + 𝜀,  𝜀~𝑁(0, 𝜎𝜀
2), 

𝑥1 = 2𝑥2 + 𝜖,  𝜖~𝑁(0,0.1𝜎𝜀
2) 

The system has the symptom of multicollinearity as two of the variables 

are highly correlated. Thus, theoretically, we could value the regression model 

that is shown in above as the ground truth model equally as we value the 

following models: 

𝑦 = 𝛽0 + (2𝛽1 + 𝛽2)𝑥2 + 𝛽3𝑥3…+ 𝛽𝑝𝑥𝑝, 

𝑦 = 𝛽0 + (𝛽1 + 0.5𝛽2)𝑥1 + 𝛽3𝑥3 +⋯+ 𝛽𝑝𝑥𝑝, 

𝑦 = 𝛽0 + 1000𝑥1 + (𝛽2 + 𝛽1 − 2000)𝑥2 + 𝛽3𝑥3 +⋯+ 𝛽𝑝𝑥𝑝, 

Thus, the problem of multicollinearity creates this inherent ambiguity of 

the models that could be taken as faithful representation of how the data was 

generated. Consequently, it makes no sense that an estimation method, 
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essentially as a reverse-engineering approach, that could recover the truth 

while the truth itself is ambivalent.  

There are some methods that we can use to diagnose for multicollinearity. 

As it is a condition that many variables are highly correlated with each other, 

we may present the correlations among the predictor variables. The R 

package “corrplot” is a package that has been widely used for visualizing 

correlation matrix. 

 

Figure 6.3: Correlations of the predictors in the regression model of 

MMSCORE 

 

The following R code shows how to use “corrplot” to visualize the 

correlations among the predictors in the regression model we have built in 

Chapter 2 for predicting MMSCORE. Result is shown in Figure 6.3. 

# Extract the covariance matrix of the regression parameters 
Sigma = vcov(AD) 
# Visualize the correlation matrix of the estimated regression pa
rameters 
# install.packages("corrplot") 
library(corrplot) 

corrplot(cov2cor(Sigma), method="ellipse") 
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From Figure 6.3 we could observe that there is significant correlations 

between the variables, FDG, AV45, and HippoNV, indicating a concern for 

multicollinearity. On the other hand, it seems that the correlations are only 

moderate, and not all the variables are densely correlated with each other.  

We can further visualize the correlation matrix of the estimated regression 

parameter: 

Sigma = vcov(lm.AD.F) 

corrplot(cov2cor(Sigma), method="ellipse") 

Then we can observe a similar pattern in Figure 6.4 as shown in Figure 6.3. 

 

Figure 6.4: Correlations of the estimated parameters in the regression 

model of MMSCORE 

 

The concern with multicollinearity, as we have discussed and illustrated 

using an analysis, is that it may result in unreliable model estimations, due to 

the inherent ambiguity and instability in the numerical operations in least 

square estimation. The corrplot could help to visually check the data for 

multicollinearity, but it could not answer the question whether we should 

worry about the model we have built. To answer this question, we could 

further use Bootstrap to introduce perturbation into the data and see if the 
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models fitted on different bootstrapped samples will change. Recall that we 

have done this in Chapter 4, we could draw the conclusion that the 

multicollinearity issue is not severe here in the AD dataset. 

Ranking of variable: A related topic to the multicollinearity problem is 

the ranking of features. For example, the R package “leaps” implements the 

exhaustive evaluation of all subsets regression, i.e., try every combination of 

variables with a minimum number of features in the regression model. The 

results will show which models achieve highest R-squared value, and which 

variables frequently appear on these models.  

 

 

Figure 6.5: Regression models ranked by their R-squared and the 

constitutive features 

 

 

The following R code implements this method on the AD dataset. Result 

is shown in Figure 6.5. 

# Evaluate the variable importance by all subsets regression 
# install.packages("leaps") 
library(leaps) 
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leaps<-regsubsets(MMSCORE ~ ., data = AD,nbest=4) 
# view results  
summary(leaps) 

# plot a table of models showing variables in each model. 
# models are ordered by the selection statistic. 
plot(leaps,scale="r2") 

From Figure 6.5 we could observe that, the variables, PTEDUCAT, FDG, AV45, 

and HippoNV, are most important features. And rs3865444 shows moderate 

significance. Other variables show less significance. 

 

III. Diagnosis in Random Forests 
Random forests make few assumptions about the data. It handles mixed 

categorical and numerical variables, nonlinearities, and variable interactions 

in a more automatic way than data models such as linear regression. However, 

random forests are complex and consist of multiple weak trees that are hard 

to interpret.  Cross-valuation error or out-of-bag (OOB) error can be used to 

evaluate the random forests’ model accuracy. However, to be able to trust 

random forests, it is desirable to extract interpretable insights from random 

forests. Here we introduce a few ways of diagnosis for random forest.  

 

 

Figure 6.6: Important scores of variables in random forest 
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Variable Importance: Each variable’s usefulness in predicting the 

outcome variable can be measured by the variable importance scores from 

random forests. There are two types of importance scores. The first one is 

the total decrease of node impurity across all tree nodes that are split by a 

variable (retrospectively). The second is measured by the accuracy decrease 

by permuting the variable (proactively).   

Here we plot the first type of importance score, the impurity gain 

importance score, from the random forest model built for the AD data. 

Result is shown in Figure 6.6. 

library("RWeka") 
library("randomForest") 
library("RRF") 
library("inTrees") 
library("ggplot2") 
 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
rm_indx <- which(colnames(data) %in% c("DX_bl", "TOTAL13", "MMSCO
RE")) 
rf <- randomForest(data[, -rm_indx], as.factor(data[, target_ind
x])) 
imp <- as.data.frame(rf$importance) 
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
" 
imp <- imp[order(imp$importance, decreasing = FALSE), , drop = FA
LSE] 
imp$feature <- rownames(imp) 
imp$feature <- factor(imp$feature, levels = as.character(imp$feat
ure)) 
theme_set(theme_gray(base_size = 18)) 
ggplot(data = imp, aes(x = feature, y = importance)) + geom_bar(s
tat = "identity",  
    aes(factor(feature)), fill = "red") + theme(axis.title.y = el
ement_blank(),  
    axis.text.y = element_text(hjust = 1, size = 15)) + coord_fli
p() 

Not a surprise, we can see from Figure 6.6 that the variables HippoNV, FDG, 

AV45, and AGE, are most important features in the random forest model. 

Interestingly, we can also see that the feature “ID” has the fourth largest 
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importance score. In normal sense, this is a nuisance feature that is supposed 

to be random assignments of IDs to subjects. Thus, we might suspect that 

random forest is too powerful in extracting nonlinear patterns from data, 

thus it is tricked by noises in a dataset, a trade-off that we could overcome by 

more careful model selection and validation using cross-validation and in-

depth analysis.  

But on the other hand, this happens in many practical situations that some 

supposedly random assignments by humans are actually not the same as pure 

random noise, but rather encode some systematical patterns. As Prof. R.A. 

Fisher said, who is a pioneer in design of experiments (DOE) and modern 

statistics, “if one tries to think of numbers at random, one thinks of numbers 

very far from at random1”. In addition, out-of-bag error doesn’t reduce 

significantly when the variable ID is removed. This may indicate that the 

creation of the ID for the subjects probably contained certain information 

about the subjects. 

In some other applications, we also find that, if we create a binary variable 

to indicate the missing data instances in a feature, sometimes this binary 

indicatory variable could be significant. Which means, the missing data itself 

as a fact is also informative to predict an outcome! This is not uncommon in 

healthcare applications. For instance, when a patient’s condition is severe, 

this patient may lack measurements of many clinical variables. Thus, the 

missing values of these variables provide valuable information in predicting 

if the patient’s condition is severe. This issue is also referred as variable 

leakage in machine learning.  

Partial dependency plot: Variable importance scores indicate whether a 

variable is informative in predicting the outcome variable, but do not provide 

information about how the outcome variable is influenced by the variables. 

Partial dependency plot can be used to visualize the relationship between the 

variables of interest and the outcome variable, averaged on other variables. 

For the AD data, we apply the partial dependency plots to the top two 

                                                      
1 Fisher, R.A. Cigarettes, cancer, and statistics. The Centennial Review of Arts & 

Science, 1958. 
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important variables. It is clear that the relationships between the outcome 

variable with both predictor variables are significant. And we could also see 

the orientation of both relationships, i.e., the larger the HippoNV or FDG, the 

more likely that the subjects belong to normal (the class “normal” is coded 

as -1). 

randomForest::partialPlot(rf, data, HippoNV, "1") 
randomForest::partialPlot(rf, data, FDG, "1") 

 

 

Figure 6.7: Partial dependency plots of variables in random forest 

 

inTrees 

Partial dependence plots provide how predictor variables interact with the 

outcome variable, while this interaction effect is averaged on other variables. 

However, it is difficult to visualize the synergistic effect of multiple variables 

on the outcome variable, and a more quantitative approach can be desirable 

at times. The inTrees framework can be used for this purpose, which will be 

discussed in detail in Chapter 10. In the framework of inTrees, rules can be 

extracted, cleaned, and summarized from random forests.  

treeList <- RF2List(rf)  # transform rf object to an inTrees' for
mat 
exec <- extractRules(treeList, data[, -rm_indx])  # R-executable 
conditions 
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## 3695 rules (length<=6) were extracted from the first 100 tree
s. 

class <- paste0("class_", as.character(data[, target_indx])) 
rules <- getRuleMetric(exec, data[, -target_indx], class) 
rules <- pruneRule(rules, data[, -target_indx], class) 
rules <- selectRuleRRF(rules, data[, -target_indx], class) 
rules <- presentRules(rules, colnames(data[, -target_indx])) 

Here are the rules from inTrees applied to the AD data. len indicates the 

number of variable-value pairs in the condition of a rule, freq is the 

percentage of instances satisfying the condition, and err is the error rate of 

the rule. Without the need to choose which variables we would like to study, 

the selected rules from inTrees indicate all the important variable interactions 

it could identify, i.e., in the generated rules shown below, it shows how 

HippoNV and FDG interact with the outcome variable. 

##       len freq    err                   
##  [1,] "2" "0.3"   "0.00600000000000001" 
##  [2,] "2" "0.503" "0.115"               
##  [3,] "3" "0.464" "0.125"               
##  [4,] "2" "0.373" "0.114"               
##  [5,] "2" "0.335" "0.04"                
##  [6,] "3" "0.286" "0.0679999999999999"  
##  [7,] "3" "0.114" "0.0679999999999999"  
##  [8,] "3" "0.209" "0.074"               
##  [9,] "3" "0.176" "0.088"               
## [10,] "4" "0.023" "0.333"               
## [11,] "4" "0.017" "0"                   
## [12,] "4" "0.11"  "0.035"               
## [13,] "4" "0.031" "0.125"               
## [14,] "3" "0.099" "0.118"               
##       condition                                               
                
##  [1,] "FDG<=6.35981 & HippoNV<=0.47428125"                    
                
##  [2,] "FDG>6.323505 & HippoNV>0.401237706"                    
                
##  [3,] "PTEDUCAT>12.5 & AV45<=1.5079 & HippoNV>0.463772954"    
                
##  [4,] "FDG<=6.464415 & HippoNV<=0.4766025375"                 
                
##  [5,] "FDG>6.35679 & HippoNV>0.4764150235"                    
                
##  [6,] "FDG>6.29287 & HippoNV>0.406667579 & rs3851179>0.5"     
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##  [7,] "AV45>1.17371 & HippoNV<=0.4713683765 & rs3851179<=0.5" 
                
##  [8,] "FDG>5.69764 & HippoNV>0.4784356305 & rs3865444<=0.5"   
                
##  [9,] "FDG>6.513695 & AV45>1.011585 & e4_1<=0.5"              
                
## [10,] "FDG<=6.30134 & AV45<=1.25324 & HippoNV>0.507448786 & e4
_1>0.5"         
## [11,] "PTEDUCAT<=12.5 & AV45>1.103075 & AV45<=1.1183375 & e4_1
<=0.5"          
## [12,] "AV45>1.057595 & AV45<=1.740035 & HippoNV<=0.421919192 &
 rs744373<=0.5" 
## [13,] "AGE<=69.55 & FDG<=6.30834 & rs744373>0.5 & rs3865444>0.
5"              
## [14,] "HippoNV<=0.461434739 & rs744373<=0.5 & rs3851179<=0.5" 
                
##       pred      impRRF               
##  [1,] "class_1" "1"                  
##  [2,] "class_0" "0.158820055688818"  
##  [3,] "class_0" "0.0882618347383523" 
##  [4,] "class_1" "0.073427455249915"  
##  [5,] "class_0" "0.0687467199669404" 
##  [6,] "class_0" "0.0557289471858664" 
##  [7,] "class_1" "0.030470587008693"  
##  [8,] "class_0" "0.0255667487231907" 
##  [9,] "class_0" "0.019899126787755"  
## [10,] "class_1" "0.0179324928636556" 
## [11,] "class_1" "0.0142529598174707" 
## [12,] "class_1" "0.0133909560650111" 
## [13,] "class_1" "0.0106427916981619" 
## [14,] "class_1" "0.0101981643861376" 

 

 

Residual analysis 

For problems that have a continuous outcome variable, one can apply 

residual analysis to random forests through the “plotmo” R package. Here we 

perform residual analysis to the AD data where the variable AGE is used as the 

outcome variable. First, we plot the residual vs. fitted figure as shown in 

Figure 6.8. If the model fits the data well, the data points should spread 

around the horizontal line (ideally residual = 0). However, in Figure 6.8, there 
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is a linear pattern between the fitted values and residuals. This indicates that 

the random forest model missed some linear relationship in the AD dataset.  

 

Figure 6.8: Residuals versus fitted in the random forest model 

 

Figure 6.9: The Q-Q plot of residuals of the random forest model 

 

require(randomForest) 
require(plotmo) 
set.seed(1) 
path <- "../../data/AD_hd.csv" 
data <- read.csv(path, header = TRUE) 
target <- data$AGE 
rm_indx <- which(colnames(data) %in% c("AGE", "ID", "TOTAL13", "M
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MSCORE")) 
X <- data[, -rm_indx] 
rf.mod <- randomForest(X, target) 
plotres(rf.mod, which = 3) 

Next, we plot the Q-Q plot that can be interpreted pretty much in the 

same way as in Figure 6.1. If the random forests fit the data well, the residuals 

should be pure noise, such that a straight line is expected. However, it can be 

seen that the residuals deviate from the straight line.  

plotres(rf.mod, which = 4) 

Both two residual analysis figures show that the random forest model has 

underfitting problems, particularly at the two ends of the prediction spectrum. 

This is expected as the learning boundary of random forests are parallel to 

the axis. To better illustrate this, we simulate a dataset where the outcome 

variable has a linear relationship with one single variable. Random forests are 

applied to the simulated dataset. From the residual vs. fitted Figure as shown 

in Figure 6.10, we can see that there are three points substantially deviated 

from the horizontal line and are colored in red. From the Q-Q plot, it is clear 

that severe derivations happen at the two ends.  

 

Figure 6.10: Residuals versus fitted in the random forest model fitted on 

the simulated dataset 
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require(ggplot2) 
set.seed(1) 
X <- data.frame(X1 = runif(30, min = -1, max = 1)) 
target <- 0.5 * X$X1  # + 0.5 * X$X2 
rf <- randomForest(X, target) 
plotres(rf, which = 3) 

plotres(rf, which = 4) 

 

Figure 6.11: The Q-Q plot of residuals of the random forest model fitted 

on the simulated dataset 

 

Figure 6.12: Underfitting patterns of random forest to capture linear 

relationships in dataset 
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Now we simulate a testing dataset with more data points, and use the 

trained random forests for prediction. The learning boundary is plotted in 

Figure 6.12. It can be seen that, at certain intervals, the predicted values 

remain constant. This is particularly clear at the two ends of the predictor 

variable, where the predictions have a lower bound and upper bound. This is 

different from linear regression where the prediction can further increase 

towards infinitely. This shows that the random forest model can have 

underfitting problem if there are linear patterns in the dataset.  

testing <- data.frame(X1 = runif(1000, min = -2, max = 2)) 
target <- 0.5 * testing$X1  # + 0.5 * X$X2 
pred <- predict(rf, testing, type = "response") 
pred.data <- cbind(testing, target, pred) 
ggplot(pred.data, aes(x = X1, y = pred)) + geom_point(size = 0.5) 

 

IV. Clustering  

IV.1 Rationale and Formulation 

The residual analysis methods mentioned above have implicitly assumed 

that, the lack of fit of the model to the data is probably resulted from some 

outliers in the data that are quite different from a majority of the data. In 

many applications, the outliers are sparse, randomly distributed, and form no 

structure. But in some applications, you may find that the implied structure 

with a majority and a few outliers doesn’t apply to the dataset. Rather, it is 

possible that there are a few majorities that make the dataset heterogeneous.  

Thus, while it is not a usual habit in an analytics book to put clustering 

algorithm together with residual analysis, here, we highlight the utility of 

clustering method for better understanding of the structure embedded in data 

to build better prediction models. 

Let’s start with the Gaussian mixture model (GMM), that has been one 

of the most popular clustering model. GMM assumes that the data come 

from not just one distribution but a few. As shown in Figure 6.13, the data is 

sampled from a mix of 4 distributions.  

# Simulate a clustering structure 
X <- c(rnorm(200, 0, 1), rnorm(200, 10,2), rnorm(200,20,1), rnorm
(200,40, 2)) 
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Y <- c(rnorm(800, 0, 1)) 
plot(X,Y, ylim = c(-5, 5), pch = 19, col = "gray25") 

 
Figure 6.13: A mixture of four Gaussian distributions 

 

This leads to the following formulation of data-generating mechanism. 

Suppose that there are 𝑀 distributions mixed together. For each data point 

𝒙𝑛, the probability that it comes from the mth distribution is denoted as 𝜋𝑚, 

while ∑ 𝜋𝑚
𝑀
𝑚=1 = 1 . In GMM, we assume that all the distributions are 

Gaussian distributions, i.e., such that we denote the mth distribution as 

𝑁(𝝁𝑚, 𝚺𝑚). The task of GMM is to learn the unknown parameters of the 

distributions {𝝁𝑚, 𝚺𝑚,𝑚 = 1,2, … ,𝑀}  and the probability vector 𝝅  that 

includes the elements {𝜋𝑚,𝑚 = 1,2,… ,𝑀} . For simplicity in the 

presentation, let’s use 𝚯 to denote all these parameters.  

 

IV.2 Theory/Method 

To learn these parameters from data, first, we need to derive the 

likelihood function. Frist, we realize that, if we have known which 

distribution the data point 𝒙𝑛 was sampled, it would be straightforward to 

derive the likelihood function. Following this idea, we invent a binary 

indicator variable, denoted as 𝑧𝑛𝑚 , while 𝑧𝑛𝑚 = 1  indicates that 𝒙𝑛  was 
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sampled from the mth distribution. Then, the complete log-likelihood 

function is: 

𝑙(𝚯) = log∏ 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1;𝚯)𝑁
𝑛=1 , 

= log∏ 𝑝(𝒙𝑛, 𝑧𝑛𝑚|𝚯)
𝑁
𝑛=1 , 

= log∏ ∏ [𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯)𝑝(𝑧𝑛𝑚 = 1)]𝑧𝑛𝑚𝑀
𝑚=1

𝑁
𝑛=1 , 

= ∑ ∑ [𝑧𝑛𝑚 log 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯) + 𝑧𝑛𝑚 log 𝜋𝑚]
𝑀
𝑚=1

𝑁
𝑛=1 . 

Meanwhile, we can derive that 

𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1;𝚯) = (2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp {−

1

2
(𝒙𝑛 −

𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛 − 𝝁𝑚)}. 

Thus,  

𝑙(𝚯) = ∑ ∑ [𝑧𝑛𝑚 log ((2𝜋)
−𝑝/2|𝚺𝑚|

−1/2 exp {−
1

2
(𝒙𝑛 −

𝑀
𝑚=1

𝑁
𝑛=1

𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛 − 𝝁𝑚)}) + 𝑧𝑛𝑚 log 𝜋𝑚]. 

To optimize for 𝚯, we need to overcome the challenge that 𝑧𝑛𝑚s are 

latent and unknown. Here, an intuitive proposal could be: 

1. Even we don’t know 𝑧𝑛𝑚, but we can estimate it if we have known 

𝚯 . For instance, it is easy to know that 𝑝(𝑧𝑛𝑚 = 1|𝐗,𝚯) =
𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)𝜋𝑚

∑ 𝑝(𝒙𝑛|𝑧𝑛𝑘=1,𝚯)𝜋𝑘
𝑀
𝑘=1

. Thus, given 𝚯, the best estimate of 𝑧𝑛𝑚 could 

be the expectation of 𝑧𝑛𝑚  as 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) = 1 ∙

𝑝(𝑧𝑛𝑚 = 1|𝐗,𝚯) + 0 ∙ 𝑝(𝑧𝑛𝑚 = 0|𝐗,𝚯) =
𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)𝜋𝑚

∑ 𝑝(𝒙𝑛|𝑧𝑛𝑘=1,𝚯)𝜋𝑘
𝑀
𝑘=1

. 

2. We can fill in 𝑙(𝚯) with the estimated 𝑧𝑛𝑚 and optimize it to update 

𝚯. Feed this updated back to Step 1 and repeat the iterations, until all 

the parameters in the iterations don’t change significantly.  

To do step 2, we need to derive the estimated 𝑙(𝚯), which is denoted as 

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯). It can be seen that 

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) = ∑ ∑ [〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) log 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯) +𝑀
𝑚=1

𝑁
𝑛=1

〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) log 𝜋𝑚]. 
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To optimize for the parameters {𝝁𝑚, 𝚺𝑚, 𝑚 = 1,2, … ,𝑀} , we take 

derivatives of 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)  regarding to these parameters and put them 

equal to zero: 

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝝁𝑚
= ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝝁𝑚

𝑁
𝑛=1 = 𝟎. 

We can derive that  

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝝁𝑚
=

𝜕 log((2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp{−

1

2
(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)})

𝜕𝝁𝑚
=

−
1

2

𝜕(𝒙𝑛−𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛−𝝁𝑚)

𝜕𝝁𝑚
= (𝒙𝑛 − 𝝁𝑚)

𝑇𝚺𝑚
−1. 

Thus, putting these together we can have  

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)(𝒙𝑛 − 𝝁𝑚)
𝑇𝚺𝑚

−1𝑁
𝑛=1 = 𝟎. 

This gives us the equation to estimate 𝝁𝑚 as 

𝝁𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)𝒙𝑛
𝑁
𝑛=1

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

. 

Similarly, we take derivatives of 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)  regarding 𝚺𝑚  and put 

them equal to zero: 

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝚺𝑚
= ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝚺𝑚

𝑁
𝑛=1 = 𝟎. 

We can derive that  

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝚺𝑚
=

𝜕 log((2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp{−

1

2
(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)})

𝜕𝚺𝑚
=

1

2

𝜕{|𝚺𝑚|
−1/2−(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)}

𝜕𝚺𝑚
=

1

2
[𝚺𝑚 − (𝒙𝑛 − 𝝁𝑚)(𝒙𝑛 − 𝝁𝑚)

𝑇]. 

Thus, putting these together we can have  

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)[𝚺𝑚 − (𝒙𝑛 − 𝝁𝑚)(𝒙𝑛 − 𝝁𝑚)
𝑇]𝑁

𝑛=1 = 𝟎. 

This gives us the equation to estimate 𝚺𝑚 as 

𝚺𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)(𝒙𝑛−𝝁𝑚)(𝒙𝑛−𝝁𝑚)

𝑇𝑁
𝑛=1

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

. 
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Lastly, in order to optimize for {𝜋𝑚,𝑚 = 1,2,… ,𝑀}, we face with the 

problem that ∑ 𝜋𝑚
𝑀
𝑚=1 = 1. To address this, we introduce the Lagrange 

multiplier 𝜆 and optimize for 

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) − 𝜆(∑ 𝜋𝑚
𝑀
𝑚=1 − 1). 

We take derivatives of it regarding 𝜋𝑚 and put them equal to zero: 

𝜕[〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)−𝜆(∑ 𝜋𝑚
𝑀
𝑚=1 −1)]

𝜕𝜋𝑚
=

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝜋𝑚
− 𝜆 = 0. 

It is known that 

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝜋𝑚
=

1

𝜋𝑚
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1 . 

Thus, for 𝑚 = 1,2,… ,𝑀 we arrive at 

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1 − 𝜆𝜋𝑚 = 0. 

Adding these 𝑀 equations together, we have 

∑ ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑀
𝑚=1 − 𝜆∑ 𝜋𝑚

𝑀
𝑚=1 = 0. 

Since ∑ 𝜋𝑚
𝑀
𝑚=1 = 1, we can get that  

𝜆 = ∑ ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑀
𝑚=1 = 𝑁. 

Thus, 

𝜋𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑁
. 

 

 

IV.3 R Lab 

The R package “Mclust” could be used to implement the GMM model 

while the underlying algorithm is the EM algorithm. Again, using the 

simulated data with four clusters, the following R code is to identify clusters. 

# use GMM to identify the clusters 
require(mclust) 

XY.clust <- Mclust(data.frame(X,Y)) 
summary(XY.clust) 

plot(XY.clust) 

Then, we can obtain: 
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## ---------------------------------------------------- 
## Gaussian finite mixture model fitted by EM algorithm  
## ---------------------------------------------------- 
##  
## Mclust VVI (diagonal, varying volume and shape) model with 4 c
omponents: 
##  
##  log.likelihood   n df       BIC       ICL 
##        -3666.07 800 19 -7459.147 -7459.539 
##  
## Clustering table: 
##   1   2   3   4  
## 199 201 200 200 

 

Figure 6.14: Clustering results of the simulated data 

 

Note that, here, we didn’t specify how many clusters should Mclust find. 

It seems that, by using model selection criteria such as BIC which balances 

model fit and model complexity (here refers to the number of clusters), 

Mclust correctly identified the four clusters. It can also be seen that, for each 

cluster, the data points are almost 200. 

Now let’s implement GMM on the AD data using Mclust. Result is shown 

in Figure 6.15. 

# install.packages("mclust") 
require(mclust) 
AD.Mclust <- Mclust(AD[,c(3,4,5,6,10,12,14,15)]) 
summary(AD.Mclust) 
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AD.Mclust$data = AD.Mclust$data[,c(1:4)] 
# plot(AD.Mclust) 

## ---------------------------------------------------- 
## Gaussian finite mixture model fitted by EM algorithm  
## ---------------------------------------------------- 
##  
## Mclust EEI (diagonal, equal volume and shape) model with 4 com
ponents: 
##  
##  log.likelihood   n df       BIC       ICL 
##       -3235.874 517 43 -6740.414 -6899.077 
##  
## Clustering table: 
##   1   2   3   4  
##  43 253  92 129 

 

Figure 6.15: Clustering results of the AD data 

 

 

Interestingly, it seems that in the AD data, four clusters are identified as 

well. And results are shown in in Figure 6.15. It seems a reasonable clustering 

result, although the boundaries between clusters are not as distinct as the 

boundaries in Figure 6.14. In real applications, particularly for those 
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applications for which we haven’t known enough, clustering is more like an 

exploration tool. It could generate suggestive results, but probably not 

confirmative conclusions.  

 

IV.4 Remarks 

Clustering-based prediction models: As the existence of clustering 

structure in a dataset violates the assumption of many prediction models such 

as the regression model that assume the data come from a homogeneous 

distribution, evidences in the literature and practices have shown that it will 

increase performance of prediction if we could identify the clusters and build 

prediction models separately for the clusters. In the literature, some 

algorithms have been developed to integrate clustering and prediction models 

jointly. For example, the Treed Regression method1 is one of the earlier 

examples that propose to build a tree to stratify the dataset and create 

regression models on the leaves. Similarly, the logistic model trees model2 

also builds the tree to allocate data points into different leaves and build 

different logistic regression model for each leaf. Motivated by this line of 

thoughts, more models have been developed with different combination of 

tree models and prediction models (or other types of statistical models) on 

the leaves34. 

The EM algorithm: The iterative two-step algorithm is actually the idea 

of the Expectation-Maximization (EM) algorithm. The EM algorithm is 

commonly used to solve for this type of problems that involve latent 

variables. The idea of the EM algorithm in GMM is to follow the iterative 

two-steps as shown in below: 

                                                      
1 Alexander, W. and Grimshaw, S. Treed regression. Journal of computational and graphical 

statistics, 1996. 
2 Landwehr, N., Hall, M. and Frank, E. Logistic model trees, Machine learning, 2004. 
3 Gramacy, R. and Lee, H. Bayesian treed gaussian process models with an application to 

computer modeling, Journal of American statistical association, 2008.  
4 Liu, H., Chen, X., Lafferty, J. and Wasserman, L. Graph-valued regression, NIPS 2009. 
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1. The E-step: Derive the posterior distribution of 𝐙  as 𝑝(𝐙|𝐗, 𝚯) . 

Calculate the expectation of 𝑙(𝚯) according to this distribution, i.e., 

denoted as 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯). 

2. The M-step: obtain 𝚯 by maximizing 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯). 

The power of the EM algorithm draws on the Jensen’s inequality. The 

Jensen’s inequality says that, let 𝑓 be a convex function defined on an interval 

𝐼 . If  𝑥1 , 𝑥2 , … 𝑥𝑛 ∈ 𝐼  and 𝛾1 , 𝛾2 , … 𝛾𝑛 ≥ 0  with ∑ 𝛾𝑖
𝑛
𝑖=1 = 1 , then 

𝑓(∑ 𝛾𝑖𝑥𝑖
𝑛
𝑖=1 ) ≤ ∑ 𝛾𝑖𝑓(𝑥𝑖)

𝑛
𝑖=1 . 

Below we show how it work: 

log 𝑝(𝐗; 𝚯) = log∫𝑝(𝐗, 𝐙; 𝚯)𝑑𝐙, 

= log∫𝑄(𝐙)
𝑝(𝐗,𝐙;𝚯)

𝑄(𝐙)
𝑑𝐙, 

≥ ∫𝑄(𝐙) log
𝑝(𝐗,𝐙;𝚯)

𝑄(𝐙)
𝑑𝐙, 

= ∫𝑄(𝐙) log 𝑝(𝐗, 𝐙;𝚯) 𝑑𝐙 − ∫𝑄(𝐙)𝑄(𝐙)𝑑𝐙. 

The EM algorithm proposed to use 𝑄(𝐙) = 𝑝(𝐙|𝐗, 𝚯). At each M-step, 

it can be see that, while the goal is to maximize log 𝑝(𝐗;𝚯) , we could 

maximize its lower bound ∫𝑄(𝐙) log 𝑝(𝐗, 𝐙; 𝚯) 𝑑𝐙, such that the objective 

function log 𝑝(𝐗;𝚯)  is improved with guarantee that the new objective 

function won’t decrease along the iterations.  

Clustering by random forest: Random forest can also be used for 

clustering, as a byproduct. One particular advantage of using random forest 

for clustering is that it can cluster data points with mixed types of variables. 

To conduct clustering in random forest is to extract the distance information 

between data points that have been learned by the random forest model from 

data in order to predict. There are multiple ways to do so. For example, one 

popular one1 that has found its success in many applications. To do so, a 

synthetic data set is generated with the same size as the original data set. 

There are two ways outlined in this approach to generate the synthetic data 

                                                      
1 Shi, T. and Horvath, S. Unsupervised learning with random forest predictors. 

Journal of computational and graphical statistics, 2006. 
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set. In either case, the original data will be taken as one class, while the 

synthetic data will be taken as another class, and the random forest model is 

used to classify the two datasets. To generate the synthetic dataset, one 

approach is to randomly generate the measurements of each variable using 

its empirical marginal distribution. As the random forest model is used to 

separate the two datasets, it will stress on the difference between the two 

datasets, which is, the variable dependency that is embedded in the original 

dataset but deliberately lost in the synthetic dataset. Hence, each tree will be 

enriched with splitting variables that are dependent on other variables. 

Another approach is a relatively uninformed one, which is to generate the 

synthetic dataset by randomly sampling from the hyper rectangle that 

contains the original data. That is, the synthetic measurements of each 

variable is randomly sampled from a uniform distribution with range 

determined by the minimum and maximum of the corresponding observed 

variable. It is observed that the first approach is more useful in practice, and 

has been implemented in Breiman’s FORTRAN code. After the random 

forest is built, a distance between any pair of two data points can be calculated 

based on the frequency of this pair of data points existing in the same node. 

With this distance information, clustering algorithms based on data pair 

distances can be applied to produce the clusters. In the following example, 

we generate a data set with two clusters. The clusters produced from the 

random forest model are shown in Figure 6.16. It can be seen that the clusters 

are reasonably recovered by random forest.  

rm(list = ls(all = TRUE)) 
library(rpart) 
library(dplyr) 
library(ggplot2) 
library(randomForest) 
library(MASS) 
library(cluster) 
ndata <- 2000 
 
sigma <- matrix(c(1, 0, 0, 1), 2, 2) 
data1 <- mvrnorm(n = 500, rep(0, 2), sigma) 
data2 <- mvrnorm(n = 500, rep(3, 2), sigma) 
data <- rbind(data1, data2) 
rf <- randomForest(data) 
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prox <- rf$proximity 
clusters <- pam(prox, 2) 
data <- as.data.frame(data) 
data$cluster <- as.character(clusters$clustering) 
ggplot(data, aes(x = V1, y = V2, color = cluster)) + geom_point()
  #+labs(title = 'Data points') 

 

 

Figure 6.16: Clusters produced by the random forest model 

 

IV. Exercises 

Data analysis 

1. Find five regression datasets from the UCI data repository or R 

dataset. Conduct a detailed analysis using the linear regression model. 

Conduct model selection and validation. Conduct residual analysis 

of your final models, and comment on your results.    

2. Find five classification datasets from the UCI data repository or R 

datasets. Conduct a detailed analysis using the logistic regression 

model. Conduct model selection and validation. Conduct residual 

analysis of your final models, and comment on your results.    

3. For the five classification datasets you have selected from the UCI 

data repository or R datasets, conduct a detailed analysis using the 

random forest model. Conduct model selection and validation. 
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Conduct residual analysis of your final models, and comment on 

your results.    

 

Derivation 

4. Derive a decision tree model that builds logistic regression model in 

its leaf nodes. You can get some help by reading this article1. Name 

this hybrid decision tree model! 

 

Programming  

5. Write your own R script to implement the hybrid decision tree model 

you have developed.  

6. Simulate a dataset that fits this model. Then, build your hybrid 

decision tree model, logistic regression model, and random forest 

model on this simulated dataset. Compare their performances.  

7. Repeat 6 on some other datasets you select from the UCI data 

repository or R dataset. 

 

                                                      
1 https://cran.r-project.org/web/packages/rpart/vignettes/usercode.pdf 



 

 

 

 

 

 

CHAPTER 7: BALANCE       
SVM AND ENSEMBLE LEARNING  

 

 

 

 

 

I. Overview 

Chapter 7 is about “balance”. As in Chapter 4 we have introduced the 

concept of overfitting, here, we further expand the issue of overfitting and 

introduce two famous models that provide two different approaches to 

address the overfitting issue. The two methods are the Support Vector 

Machine (SVM) and Ensemble Learning that includes RF as a particular case. 

The solutions provided in both methods to control the risk of overfitting are 

architectural, rather than some technical adjustments or implementation 

tricks.  

 

II. Support Vector Machine 

II.1 Rationale and Formulation 

As we have learned that, the complexity of the final model should match 

the complexity of the signal embed in the noise. Overfitting happens when 

the model not only fits the signal part of the data, but also the noise part. 
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Overfitting could lead to promising results on the training data since the 

model “memorizes” the training data rather than generalizing the training 

data in the form as a model. Since the noise in the training data won’t 

reappear in future unseen data, it is sure that the overfitted model won’t 

perform well on future unseen data.  

Thus, a question that appears in every practice of data analytics is, what 

model should I use? Is the model too simple? Or too complex? 

Let’s give this question a nice and specific context. Consider the 

classification problem that uses linear model to represent the decision 

boundary, as shown in below. 

 

 
Figure 7.1: Which model (e.g., which line) should we use as our 

classification model to separate the two classes of data points? 

 

From Figure 7.1, we can see that, if we only consider the classification 

error on the given data points of the two classes, it seems that all the models 

(represented as the lines) could achieve perfect classification. Thus, 

classification error is not sufficient in this case for us to decide on the optimal 

model. What else should we bring into the thought process? 

As we have mentioned that, the objective of the model is to predict on 

future unseen data, now we may turn our attention from the given training 

data shown in Figure 7.1 to future unseen data. What could the future unseen 

data look like? Will all the models shown in Figure 7.1 perform equally well 

on the future unseen data?  
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It seems that, the lines that are close to the data points may bear a risk of 

performing bad on future unseen data. This is because that it seems to be 

very plausible that future red data points may allocate a little bit outside of 

the current region of the red data points, and thus, if we pick up the line that 

is close to red data points, the model may just misclassify the new red data 

points. 

In other words, the lines that are too close to either side of the data points 

lack a safe margin. To reduce risk, we like to have the margin as large as 

possible. This is in the same spirit of risk management. This gave birth to the 

idea of SVM, as shown in Figure 7.2, where the model SVM suggests is the 

one that has the maximum margin. 

 

 

Figure 7.2: The model that has the maximum margin – the basic idea of 

SVM 

 

II.2 Theory/Method 

Derivation of the SVM formulation: Denote the training data points as 

{(𝒙𝑛, 𝑦𝑛), 𝑛 = 1,2,… , 𝑁}. We are now ready to derive the mathematical 

framework corresponding to the idea shown in Figure 7.2. The goal is to 

identify a model, 𝒘𝑇𝒙 + 𝑏, using which we can make binary classification: 

If  𝒘𝑇𝒙 + 𝑏 > 0, then 𝑦 = 1; 

Otherwise, 𝑦 = −1; 
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As we aim to maximize the margin, first, we need to be able to denote the 

margin mathematically in terms of the model parameters 𝒘 and 𝑏. 

 

 

Figure 7.3: Illustration of how to derive the margin  

 

 
Figure 7.4: Formulation of the idea of maximum margin  

 

Note that, as shown in Figure 7.3, for a data point 𝐴, its perpendicular 

distance to the line 𝒘𝑇𝒙 + 𝑏 = 0 can be derive as: 

‖𝐴𝑁‖ = ‖𝐴𝐵‖ cos𝜃 = ‖𝐴𝐵‖
𝐴𝐵⃗⃗ ⃗⃗  ⃗∙�⃗⃗⃗� 

‖𝐴𝐵‖‖𝒘‖
=

𝐴𝐵⃗⃗ ⃗⃗  ⃗∙�⃗⃗⃗� 

‖𝒘‖
. 

Denote the coordinates of the two data points 𝐴 and 𝐵 as 𝒙𝑎  and 𝒙𝑏 , 

respectively. Then, we can see that 

𝐴𝐵⃗⃗ ⃗⃗  ⃗∙�⃗⃗⃗� 

‖𝒘‖
=

𝒘𝑇(𝒙𝑎−𝒙𝑏)

‖𝒘‖
. 



 

Analytics of Small Data 

177 
 

As the data point 𝐵 is an arbitrary data point on the line 𝒘𝑇𝒙 + 𝑏 = 0, it 

means that 𝒘𝑇𝒙𝑏 = −𝑏. Thus, we can further derive that  

‖𝐴𝑁‖ =
𝒘𝑇(𝒙𝑎−𝒙𝑏)

‖𝒘‖
=

𝒘𝑇𝒙𝑎+𝑏

‖𝒘‖
. 

Now we can lay this derivation on Figure 7.2 to obtain Figure 7.4. 

As shown in Figure 7.4, with a clear characterization of the margin of the 

data points to the decision line in terms of the model parameters 𝒘 and 𝑏, 

we still need more to write up the objective function of SVM that can 

maximizes the margin. We know that, as shown in Figure 7.2, the margin is 

only determined by 𝒘, but it seems that in our derivation the margin also 

depends on the data points. This indicates that there is a numerical dimension 

to fix, as currently the whole formulation is underdetermined.  

Thus, in the formulation of SVM, it was suggested to fix numerical scale 

of the model with a constraint: 

|𝒘𝑇𝒙𝑛 + 𝑏| = 1 for any 𝒙𝑛 that is on the margin. 

With this fix, now we are ready to derive the margin in the SVM model 

as 
2

‖𝒘‖
. To maximize the margin of the model is equivalent to minimize ‖𝒘‖. 

This gives us the objective function of the SVM model. 

Now let’s derive the constraints of the SVM model. To derive the model 

from these training data points, obviously, we need to make sure the model 

can perform correctly on the training data. As the data points on the margin 

satisfy |𝒘𝑇𝒙𝑛 + 𝑏| = 1, the data points that are beyond the margin will 

satisfy |𝒘𝑇𝒙𝑛 + 𝑏| > 1. 

Thus, the final SVM formulation is: 

min
𝒘

1

2
‖𝒘‖, 

Subject to: 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 for 𝑛 = 1,2,… ,𝑁. 

To solve this problem, first, we can use the method of Lagrange multiplier: 

𝐿(𝒘, 𝑏, 𝜶) =
1

2
‖𝒘‖ − ∑ 𝛼𝑛[𝑦𝑛(𝒘

𝑇𝒙𝑛 + 𝑏) − 1]
𝑁
𝑛=1 . 

This could be rewritten as 

𝐿(𝒘, 𝑏, 𝜶) =
1

2
𝒘𝑇𝒘−∑ 𝛼𝑛𝑦𝑛𝒘

𝑇𝒙𝑛
𝑁
𝑛=1 − 𝑏∑ 𝛼𝑛𝑦𝑛

𝑁
𝑛=1 + ∑ 𝛼𝑛

𝑁
𝑛=1 . 
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Differentiating 𝐿(𝒘, 𝑏, 𝜶) with respect to 𝒘 and 𝑏, and setting to zero 

yields: 

𝒘 = ∑ 𝛼𝑛𝑦𝑛𝒙𝑛
𝑁
𝑛=1 ,    

∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0. 

Then, we can rewrite 𝐿(𝒘, 𝑏, 𝜶) as 

𝐿(𝒘, 𝑏, 𝜶) = ∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 . 

This is because that: 
1

2
𝒘𝑇𝒘 =

1

2
𝒘𝑇 ∑ 𝛼𝑛𝑦𝑛𝒙𝑛

𝑁
𝑛=1 =

1

2
∑ 𝛼𝑛𝑦𝑛𝒘

𝑇𝒙𝑛
𝑁
𝑛=1 =

1

2
∑ 𝛼𝑛𝑦𝑛(∑ 𝛼𝑛𝑦𝑛𝒙𝑛

𝑁
𝑛=1 )𝑇𝒙𝑛

𝑁
𝑛=1 =

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 . 

Then, finally, we can derive the model of SVM by solving its dual form 

problem: 

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 , 

Subject to: 𝛼𝑛 ≥ 0 for 𝑛 = 1,2,… , 𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0. 

This is a quadratic programming problem that can be solved using 

many existing packages.  

Note that, the learned model parameters could be represented as: 

�̂� = ∑ 𝛼𝑛𝑦𝑛𝒙𝑛
𝑁
𝑛=1  and �̂� = 1 − �̂�𝑇𝒙𝑛 for any 𝒙𝑛 whose 𝛼𝑛 > 0. 

And we know that, based on the KKT condition of the SVM formulation, 

the following equations must hold: 

𝛼𝑛[𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) − 1] = 0 for 𝑛 = 1,2, … ,𝑁. 

Thus, for any data point, e.g., the nth data point, it is either  

𝛼𝑛 = 0 or 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) − 1 = 0. 

 

Support vectors: This leads to the following interesting phenomenon, 

which leads to the definition of the “support vectors” as shown in Figure 

7.5. The support vectors are what have been taken by the learning algorithm 

to constitute its decision function, which thus hold crucial implications for 

the SVM model. First, based on some theoretical evidences, the number of 

support vectors is usually a metric that can indicate the healthiness of the 

model, i.e., the smaller the better. Second, it also reveals that the main 
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statistical information the SVM model uses is from the support vectors. Thus, 

some works have been inspired by this aspect to accelerate the computation 

of SVM model training by discarding potentially non-support-vectors.  

 

 
Figure 7.5: Support vectors of SVM are the data points that are on the 

margins 

 

 
Figure 7.6: Behaviors of the slack variables  

 

 

Extension to non-separable cases: Note that, we have assumed that 

the two classes are separable. It is easy to relax this assumption. Ideally, in 

SVM, we hope that all the data points are either on or beyond the margin. 

We could relax this idealism and allow some data points to be within the 
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margins or even on the wrong side of the decision line. To do so, we 

introduce the slack variables: 

𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 for 𝑛 = 1,2,… ,𝑁. 

As shown in Figure 7.6, the data points that are within the margins will 

have the corresponding slack variables as 0 ≤ 𝜉𝑛 ≤ 1, and the data points 

that are on the wrong side of the decision line have the corresponding slack 

variables as 𝜉𝑛 > 1. 

 

 

 
                             (a)                                               (b) 

Figure 7.7: (a) A linearly inseparable dataset; (b) with transformation (a) 

becomes separable 

 

The corresponding formulation of the SVM model becomes: 

min
𝒘

1

2
‖𝒘‖ + 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1 , 

Subject to: 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 and 𝜉𝑛 ≥ 0, for 𝑛 = 1,2,… ,𝑁. 

Here, 𝐶 is a user-specified parameter to control how much tolerance we 

can assign for the slack variables.  

Extension to nonlinear SVM: So far, we have presented SVM in linear 

models. Sometimes, the decision boundary could not be characterized as 

linear models, as shown in Figure 7.7 (a).  

To create a nonlinear model within the framework of linear model, we 

could conduct transformation of the original variables. Here, we conduct the 

following transformation from 𝒙 to 𝒛:  
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𝑧1 = 𝑥1
2, 

𝑧2 = √2𝑥1𝑥2, 

𝑧3 = 𝑥2
2. 

Then, in the new coordinates system, as shown in Figure 7.7 (b), the data 

points of the two classes become separable. This is the approach we often 

use in regression models as well, to create explicit transformation that asks 

us to write up how the features 𝒛 could be represented as 𝒙. 

A remarkable thing about SVM is that, its formulation allows implicit 

transformation. This implicit transformation could be done by the use of 

kernel function. The dual formulation of SVM on the transformed variables 

is: 

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒛𝑛

𝑇𝒛𝑚
𝑁
𝑚=1

𝑁
𝑛=1 , 

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2, … ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0. 

It can be seen that, the dual formulation of SVM shown above doesn’t 

really need the information of individual 𝒛𝑛. Rather, only the inner product 

of 𝒛𝑛
𝑇𝒛𝑚 is needed. As 𝒛 is essentially functional of 𝒙, i.e., 𝒛 = 𝜙(𝒙), it can 

be seen that 𝒛𝑛
𝑇𝒛𝑚 is a function of 𝒙𝑛 and 𝒙𝑚. Thus, we can write it up as 

𝒛𝑛
𝑇𝒛𝑚 = 𝐾(𝒙𝑛, 𝒙𝑚). This is called the “kernel function”. A kernel function 

is a function that theoretically entails a transformation 𝒛 = 𝜙(𝒙) such that 

𝐾(𝒙𝑛, 𝒙𝑚) implies that it can be written as an inner product 𝐾(𝒙𝑛, 𝒙𝑚) =

𝜙(𝒙)𝑇𝜙(𝒙) . In other words, our effort now is not to seek explicit 

transformations that may be tedious and difficult, rather, we seek kernel 

functions that entail such transformations.  

Nowadays we have had many such kernel functions to use. For example, 

the Gaussian radial basis kernel function is defined as  

𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒
−𝛾‖𝒙𝑖−𝒙𝑗‖

2

, 

where the transformation 𝒛 = 𝜙(𝒙)  is implicit and infinitely long to 

represent any smooth function.  

The polynomial kernel function is defined as  

𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 1)

𝑞
. 
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Also, the linear kernel function is defined as  

𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗. 

And there are still many new kernel functions to be developed to enrich 

our capacity of representing nonlinear decision boundaries in real-world 

applications. With a given kernel function, SVM learns the model by solving 

the following optimization problem: 

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝐾(𝒙𝑛, 𝒙𝑚)

𝑁
𝑚=1

𝑁
𝑛=1 , 

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2, … ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0. 

However, in the kernel space, it will no longer to possible to write up the 

parameter 𝒘 the same way as in linear models.  

For any new data point, denoted as 𝒙∗, the learned SVM model predict 

on it as 

If  ∑ 𝛼𝑛𝑦𝑛𝐾(𝒙𝑛, 𝒙∗)
𝑁
𝑛=1 + 𝑏 > 0, then 𝑦 = 1; 

Otherwise, 𝑦 = −1. 

 

II.3 R Lab 

Let’s try on an example. Consider a dataset: 

𝒙1 = (−1,−1), 𝑦1 = −1; 

𝒙2 = (−1,+1), 𝑦2 = +1; 

𝒙3 = (+1,−1), 𝑦3 = +1; 

𝒙4 = (+1,+1), 𝑦4 = −1. 

We could use R to visualize this dataset. The R code is shown in below: 

# Package installation 
# pkgs <- c( 'ggplot2', 'kernlab', 'ROCR' ) 
# install.packages( pkgs )  
# source( 'http://bioconductor.org/biocLite.R' ) 
# biocLite( 'ALL' ) 
 
# For the toy problem 
x = matrix(c(-1,-1,1,1,-1,1,-1,1), nrow = 4, ncol = 2) 
y = c(-1,1,1,-1) 
linear.train <- data.frame(x,y) 
 
# Visualize the distribution of data points of two classes 
require( 'ggplot2' ) 
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p <- qplot( data=linear.train, X1, X2, colour=factor(y),xlim = c
(-1.5,1.5), ylim = c(-1.5,1.5)) 
p <- p + labs(title = "Scatterplot of data points of two classes
") 
print(p) 

The dataset is visualized in Figure 7.8. It is clear that the dataset presents 

a linearly inseparable problem, calling for the use of kernel to build nonlinear 

classification boundary.  

 

 
Figure 7.8: A linearly inseparable dataset 

 

Now, consider the kernel function, 𝐾(𝒙𝑛, 𝒙𝑚) = (𝒙𝑛
𝑇𝒙𝑚 + 1)

2, which 

corresponds to the transformation: 

𝜙(𝒙𝑛) = [1, √2𝑥𝑛,1, √2𝑥𝑛,2, √2𝑥𝑛,1𝑥𝑛,2, 𝑥𝑛,1
2 , 𝑥𝑛,2

2 ]
𝑇
. 

The objective function becomes: 

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝐾(𝒙𝑛, 𝒙𝑚)

4
𝑚=1

4
𝑛=1 , 

Subject to: 𝛼𝑛 ≥ 0  for 𝑛 = 1,2,… ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0. 

We can calculate the kernel matrix as 

𝑲 = [

9 1
1 9

1 1
1 1

1 1
1 1

9 1
1 9

]. 

Then, we can solve the quadratic programming problem and get that  
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𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.125. 

In this particular case, as we can write up the transformation explicitly, we 

can write up �̂� explicitly as: 

�̂� = ∑ 𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)
4
𝑛=1 = [0,0,0,1/√2, 0,0]

𝑇
. 

Then, we can write up the decision function explicitly as: 

𝑓(𝒙∗) = �̂�
𝑇𝜙(𝒙∗) = 𝑥∗,1𝑥∗,2. 

As you can see, this is the decision boundary for a typical XOR problem. 

On the other hand, we can use R to build the SVM model on this dataset and 

see if our results could be reproduced in R. To do so, we use the R package 

“kernlab” and its function ksvm(). The R code is shown in below:  

# Train a linear SVM 
x <- cbind(1, poly(x, degree = 2, raw = TRUE)) 
coefs = c(1,sqrt(2),sqrt(2),sqrt(2),1,1) 
x <- x * t(matrix(rep(coefs,4),nrow=6,ncol=4)) 
linear.train <- data.frame(x,y) 
require( 'kernlab' ) 

linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel
='vanilladot', C=10, scale=c()) 

The function alpha() returns the values of 𝛼𝑛 for 𝑛 = 1,2, … ,𝑁. Here, 

note that, the function scaled the vector 𝜶. Thus, our manual results are 

consistent with the results obtained by using R. 

alpha(linear.svm) #scaled alpha vector 

## [[1]] 
## [1] 0.2499619 0.2499619 0.2499873 0.2499873 

Now let’s do more examples. First, let’s generate a dataset with linearly 

separable boundary.  

# Generate a dataset with linear boundary 
n <- 200 
p <- 2 
n.pos <- n/2 
x.pos <-  matrix(rnorm( n*p, mean=0, sd=1 ),n.pos, p) 
x.neg <-  matrix(rnorm( n*p, mean=2, sd=1), n-n.pos, p) 
y <- c(rep(1, n.pos), rep(-1, n-n.pos)) 
n.train <- floor( 0.8 * n ) 
idx.train <- sample( n, n.train ) 
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is.train <- rep( 0, n ) 
is.train[idx.train] <- 1 
linear.data <- data.frame( x=rbind( x.pos, x.neg ), y=y, train=i
s.train ) 
# Extract train and test subsets of the dataset 
linear.train <- linear.data[linear.data$train==1, ] 
linear.train <- subset( linear.train, select=-train ) 
linear.test <- linear.data[linear.data$train==0, ] 
linear.test <- subset( linear.test, select=-train ) 
str(linear.train) 

## 'data.frame':    160 obs. of  3 variables: 
##  $ x.1: num  0.707 -0.92 0.87 -0.621 2.101 ... 
##  $ x.2: num  -2.959 1.37 -0.526 0.989 0.833 ... 
##  $ y  : num  1 1 1 1 1 1 1 1 1 1 ... 

str(linear.test) 

## 'data.frame':    40 obs. of  3 variables: 
##  $ x.1: num  -1.857 -1.703 0.923 1.448 -0.723 ... 
##  $ x.2: num  1.7934 0.0927 1.4485 1.1649 -0.1459 ... 
##  $ y  : num  1 1 1 1 1 1 1 1 1 1 ... 

We can visualize the data as shown in Figure 7.9.  

# Visualize the distribution of data points of two classes 
require( 'ggplot2' ) 
p <- qplot( data=linear.data, x.1, x.2, colour=factor(y) ) 
p <- p + labs(title = "Scatterplot of data points of two classes
") 
print(p) 

We then use the ksvm() function to build the SVM model: 

# Train a linear SVM 
require( 'kernlab' ) 
linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel
='vanilladot', C=10, scale=c()) 

By typing in linear.svm, we can see more details of the built model. In 

this analysis, out of 200 data points, only 7 data points are needed to be the 

support vectors to define the linear boundary to separate two classes. This is 

a good and healthy sign of the generalizability of the model to achieve robust 

success on unseen future data if the unseen future data would come from the 

same distribution of the training data.  
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We can also visualize the built model using the following R code, as 

shown in Figure 7.10. The black points shown in Figure 7.10 are the support 

vectors. 

# Plot the model 
plot( linear.svm, data=linear.train ) 

 

Figure 7.9: A randomly generated dataset with linearly separable boundary 

 

 

Figure 7.10: Visualization of the linear SVM model built for the simulated 

dataset 

 

To verify our hypothesis that the model would obtain robust performance 

on unseen testing data, here, we present the ROC curve of the linear SVM 

model on the testing data that is not used in training the model. 
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# Generate the ROC curve using the testing data 
# Prediction scores 
linear.prediction.score <- predict(linear.svm, linear.test, type=
'decision') 
# Compute ROC and Precision-Recall curves 
require( 'ROCR') 

linear.roc.curve <- performance( prediction( linear.prediction.sc
ore, linear.test$y ), 
                                 measure='tpr', x.measure='fpr' ) 
plot(linear.roc.curve,  lwd = 2, col = "orange3",  
     main = "Validation of the linear SVM model using testing dat
a") 

As shown in Figure 7.11, indeed, the ROC curve shows the linear SVM 

model predicts well on the testing data. 

 

 

Figure 7.11: The ROC curve of the linear SVM model on testing data 

 

On the other hand, similarly as what we have discussed in Chapter 5, in 

practice we will not use a testing data to guide the model selection. Thus, the 

performance of the trained model has to be evaluated using the training data.  
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Figure 7.12: The ROC curve of the linear SVM model by 10-folder 

cross-validation 

 

To achieve this, the cross-validation has been shown in Chapter 5 that 

can approximate the testing performance of the model. Here, again, we use 

this example to show that indeed the cross-validation provides such an 

effective way. The R code is shown in below: 

# Generate the ROC curve using 10-folder cross validation 
n <- nrow(linear.data) 
n.folds=10 
idx <- split(sample(seq(n)), seq(n.folds)) 
scores <- rep(0, n) 
for(i in seq(n.folds)) { 
  model <- ksvm(y ~ ., data=linear.data[-idx[[i]], ], kernel='van
illadot', C=100 ) 
  scores[idx[[i]]] <- predict( model, linear.data[idx[[i]],], typ
e='decision' ) 
} 

plot(performance(prediction(scores, linear.data$y), measure='tpr
', x.measure='fpr' ),  
     lwd = 2, col = "steelblue2", 
     main = "Validation of the linear SVM model using 10-folder c
ross validation") 

It can be observed that the ROC curve presented in Figure 7.12 

approximates the ROC curve presented in Figure 7.11 well, showing that the 
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ROC curve by 10-folder cross-validation is a good estimation of the ROC 

curve obtained on a testing dataset.  

Since the 10-folder cross-validation could be used to obtain the prediction 

performance of any given model, it gives rise to the possibility that we could 

use it to compare different model formulations and decide on which model 

is the best. To do so, the R package “caret” could be used that has an 

automatic procedure dedicated for this.  

# Cross-validation using caret pacakge 
# install.packages("caret") 
# install.packages("pROC") 
# Training SVM Models 
require(caret) 

require(kernlab)       # support vector machine  
require(pROC)          # plot the ROC curves 

# Setup for cross validation 
ctrl <- trainControl(method="repeatedcv",   # 10fold cross valida
tion 
                     repeats=5,         # do 5 repititions of cv 
                     summaryFunction=twoClassSummary,   # Use AUC
 to pick the best model 
                     classProbs=TRUE) 
 
#Train and Tune the SVM 
linear.train <- data.frame(linear.train) 
trainX <- linear.train[,1:2] 
trainy= linear.train[,3] 
trainy[which(trainy==1)] = rep("T",length(which(trainy==1))) 
trainy[which(trainy==-1)] = rep("F",length(which(trainy==-1))) 
svm.tune <- train(x = trainX,  
                  y = trainy,  
                  method = "svmLinear",   # Linear kernel  
                  tuneLength = 9,                   # 9 values of
 the cost function 
                  preProc = c("center","scale"),  # Center and sc
ale data 
                  metric="ROC", 
                  trControl=ctrl) 
 
svm.tune 

Then we can obtain that: 

svm.tune 
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## Support Vector Machines with Linear Kernel  
##  
## 160 samples 
##   2 predictor 
##   2 classes: 'F', 'T'  
##  
## Pre-processing: centered (2), scaled (2)  
## Resampling: Cross-Validated (10 fold, repeated 5 times)  
## Summary of sample sizes: 144, 144, 144, 145, 143, 144, ...  
## Resampling results: 
##  
##   ROC        Sens       Spec      
##   0.9625198  0.8964286  0.9055556 
##  
## Tuning parameter 'C' was held constant at a value of 1 

While “caret” provides an automatic but sealed process to help us 

directly arrive the final end, the R package “manipulate” could be used to 

visualize the intermediate process. Here, we take some snapshots of this 

dynamic and interactive process and present these snapshots in Figures 7.13 

and 7.14. It can be seen that, with larger value of 𝐶, a tighter margin could be 

obtained with less support vectors.  

 

                                

Figure 7.13: Visualization of the linear SVM model with C = 0.01. 
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Figure 7.14: Visualization of the linear SVM model with C = 10. 

 

Let’s further consider a nonlinear dataset. 

# Generate a dataset with nonlinear boundary 
n = 100 
p = 2 
bottom.left <- matrix(rnorm( n*p, mean=0, sd=1 ),n, p) 
upper.right <- matrix(rnorm( n*p, mean=4, sd=1 ),n, p) 
tmp1 <- matrix(rnorm( n*p, mean=0, sd=1 ),n, p) 
tmp2 <- matrix(rnorm( n*p, mean=4, sd=1 ),n, p) 
upper.left <- cbind( tmp1[,1], tmp2[,2] ) 
bottom.right <- cbind( tmp2[,1], tmp1[,2] ) 
y <- c( rep( 1, 2 * n ), rep( -1, 2 * n ) ) 
idx.train <- sample( 4 * n, floor( 3.5 * n ) ) 
is.train <- rep( 0, 4 * n ) 
is.train[idx.train] <- 1 
nonlinear.data <- data.frame( x=rbind( bottom.left, upper.right, 
upper.left, bottom.right ), y=y, train=is.train ) 

# Visualize the distribution of data points of two classes 
require( 'ggplot2' ) 
p <- qplot( data=nonlinear.data, x.1, x.2, colour=factor(y) ) 
p <- p + labs(title = "Scatterplot of data points of two classes
") 
print(p) 

As shown in Figure 7.15, this nonlinear dataset is similar to the XOR 

problem we have shown in the beginning of this section, in the sense that a 

similar style of classification boundary is needed.  
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Figure 7.15: A randomly generated dataset with nonlinear boundary 

 

Then, let’s use the “kernlab” with Gaussian kernel (denoted as 

“svmRadial”) and the 10-folder cross-validation procedure in “caret” to 

train a nonlinear SVM model.  

# Use cross-validation to choose C 
# install.packages("caret") 
# install.packages("pROC") 
# Training SVM Models 
require(caret) 
require(kernlab)       # support vector machine  
require(pROC)          # plot the ROC curves 
# Setup for cross validation 
ctrl <- trainControl(method="repeatedcv",   # 10fold cross valida
tion 
                     repeats=1,         # do 5 repititions of cv 
                     summaryFunction=twoClassSummary,   # Use AUC
 to pick the best model 
                     classProbs=TRUE) 
 
#Train and Tune the SVM 
nonlinear.train <- data.frame(nonlinear.train) 
trainX <- nonlinear.train[,1:2] 
trainy= nonlinear.train[,3] 
trainy[which(trainy==1)] = rep("T",length(which(trainy==1))) 
trainy[which(trainy==-1)] = rep("F",length(which(trainy==-1))) 
svm.tune <- train(x = trainX,  
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                  y = trainy,  
                  method = "svmRadial",   # Radial kernel  
                  tuneLength = 9,                   # 9 values of
 the cost function 
                  preProc = c("center","scale"),  # Center and sc
ale data 
                  metric="ROC", 
                  trControl=ctrl) 
 
svm.tune 

Details of the model tuning by the cross-validation process is shown in 

below: 

## Support Vector Machines with Radial Basis Function Kernel  
##  
## 350 samples 
##   2 predictor 
##   2 classes: 'F', 'T'  
##  
## Pre-processing: centered (2), scaled (2)  
## Resampling: Cross-Validated (10 fold, repeated 1 times)  
## Summary of sample sizes: 315, 315, 315, 315, 315, 315, ...  
## Resampling results across tuning parameters: 
##  
##   C      ROC        Sens       Spec      
##    0.25  0.9878913  0.9584559  0.9502924 
##    0.50  0.9869174  0.9584559  0.9502924 
##    1.00  0.9872463  0.9643382  0.9502924 
##    2.00  0.9826561  0.9525735  0.9558480 
##    4.00  0.9797171  0.9584559  0.9502924 
##    8.00  0.9754708  0.9584559  0.9558480 
##   16.00  0.9735144  0.9525735  0.9447368 
##   32.00  0.9709086  0.9466912  0.9502924 
##   64.00  0.9659980  0.9290441  0.9391813 
##  
## Tuning parameter 'sigma' was held constant at a value of 1.834
54 
## ROC was used to select the optimal model using  the largest va
lue. 
## The final values used for the model were sigma = 1.83454 and C
 = 0.25. 

Again, we can use the package “manipulate” to see how the model 

changes according to the parameters such as C and even kernel types. 
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Figure 7.16: SVM model with C = 0.01 and Gaussian kernel 

        

Figure 7.17: SVM model with C = 10 and Gaussian kernel 

  

Figure 7.18: SVM model with C = 0.1 and Laplacian kernel 
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Figure 7.19: SVM model with C = 10 and Laplacian kernel 

 

Finally, let’s implement the above process on the AD dataset. 

#### Dataset of Alzheimer's Disease  
#### Objective: prediction of diagnosis  
# filename 
AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 

#Train and Tune the SVM 
n = dim(AD)[1] 
n.train <- floor(0.8 * n) 
idx.train <- sample(n, n.train) 
AD[which(AD[,1]==0),1] = rep("Normal",length(which(AD[,1]==0))) 
AD[which(AD[,1]==1),1] = rep("Diseased",length(which(AD[,1]==1))) 
AD.train <- AD[idx.train,c(1:16)] 
AD.test <- AD[-idx.train,c(1:16)] 
trainX <- AD.train[,c(2:16)] 
trainy= AD.train[,1] 
 
# Setup for cross validation 
ctrl <- trainControl(method="repeatedcv",   # 10fold cross valida
tion 
                     repeats=1,         # do 5 repititions of cv 
                     summaryFunction=twoClassSummary,   # Use AUC
 to pick the best model 
                     classProbs=TRUE) 
 
# Use the expand.grid to specify the search space    
grid <- expand.grid(sigma = c(0.002, 0.005, 0.01, 0.012, 0.015), 
                    C = c(0.3,0.4,0.5,0.6) 
) 
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svm.tune <- train(x = trainX,  
                  y = trainy,  
                  method = "svmRadial",   # Radial kernel  
                  tuneLength = 9,                   # 9 values of
 the cost function 
                  preProc = c("center","scale"),  # Center and sc
ale data 
                  metric="ROC", 
                  tuneGrid = grid, 
                  trControl=ctrl) 
 
svm.tune 

Then we can obtain the following results. 

## Support Vector Machines with Radial Basis Function Kernel  
##  
## 413 samples 
##  15 predictor 
##   2 classes: 'Diseased', 'Normal'  
##  
## Pre-processing: centered (15), scaled (15)  
## Resampling: Cross-Validated (10 fold, repeated 1 times)  
## Summary of sample sizes: 371, 372, 372, 371, 372, 372, ...  
## Resampling results across tuning parameters: 
##  
##   sigma  C    ROC        Sens       Spec      
##   0.002  0.3  0.8929523  0.9121053  0.5932900 
##   0.002  0.4  0.8927130  0.8757895  0.6619048 
##   0.002  0.5  0.8956402  0.8452632  0.7627706 
##   0.002  0.6  0.8953759  0.8192105  0.7991342 
##   0.005  0.3  0.8965129  0.8036842  0.8036797 
##   0.005  0.4  0.8996565  0.7989474  0.8357143 
##   0.005  0.5  0.9020830  0.7936842  0.8448052 
##   0.005  0.6  0.9032422  0.7836842  0.8450216 
##   0.010  0.3  0.9030514  0.7889474  0.8541126 
##   0.010  0.4  0.9058248  0.7886842  0.8495671 
##   0.010  0.5  0.9060999  0.8044737  0.8541126 
##   0.010  0.6  0.9077848  0.8094737  0.8450216 
##   0.012  0.3  0.9032308  0.7781579  0.8538961 
##   0.012  0.4  0.9049043  0.7989474  0.8538961 
##   0.012  0.5  0.9063505  0.8094737  0.8495671 
##   0.012  0.6  0.9104511  0.8042105  0.8586580 
##   0.015  0.3  0.9060412  0.7886842  0.8493506 
##   0.015  0.4  0.9068165  0.8094737  0.8495671 
##   0.015  0.5  0.9109051  0.8042105  0.8541126 
##   0.015  0.6  0.9118615  0.8042105  0.8632035 
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##  
## ROC was used to select the optimal model using  the largest va
lue. 
## The final values used for the model were sigma = 0.015 and C =
 0.6. 

It can be seen that, by 10-folder cross-validation, the best model 

parameters are sigma = 0.015 and C = 0.6, which achieve a prediction 

performance as 90.49%.  

 

II.4 Remarks 

Is SVM a more complex model? Here, we need to look at the term 

“complexity” carefully. What is a complex model? Comparing with linear 

regression model or logistic regression model, the idea of SVM and 

formulation of SVM indeed seems more complex. This is probably true. The 

inventor of SVM, Vladimir Vapnik, once said in the preface of his seminar 

book1 that delineates the theory of SVM, that he often heard peers talked in 

conferences that complex models don’t work but simple models work. He 

thought, SVM, commonly perceived as a more complex model, is essentially 

simpler than some simple model. This is true, since some models that look 

simple are only because they presuppose stronger conditions, which make 

them essentially more complex!  

Thus, a model is more complex than another model doesn’t necessary 

stem from the fact that the more complex one employs a more sophisticated 

mathematical representation. At least, in our current context, it doesn’t mean 

in this way when we say a model is complex. Here, we say that a model is 

more complex if it provides more capacity to represent the statistical 

phenomena in the training data. In other words, a more complex model is 

more flexible of responding to any patterns in the data by adjusting itself. 

Now, look at Figure 7.20, which model is simpler? 

 

                                                      
1 Vapnik, V. The nature of statistical learning theory. Springer, 2000. 
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Figure 7.20: SVM is actually a simpler model  

 

Is SVM a neural network model? Another interesting fact about SVM 

is that, when it was developed, it was named as “support vector network”. In 

other words, it has a connection with the artificial neural network. This is 

revealed in the Figure 7.21. Readers who know neural network models are 

encouraged to write up the mathematical model of the SVM model following 

the neural network format as shown in Figure 7.21.  

 

 
Figure 7.21: SVM as a neural network model 
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III. Ensemble Learning  

III.1 Rationale and Formulation 

As we mentioned in the beginning of this chapter, the random forest 

model is a particular case of the more general category of models that are 

called ensemble models. Ensemble models consist of multiple base models, 

denoted as, ℎ1, ℎ2, … , ℎ𝐾, where 𝐾 is the total number of base models. Each 

model can be considered as a hypothesis in the space of ℋ that includes all 

the possible models. A general framework of ensemble learning is illustrated 

in Figure 7.22. Each model is built on a sample that is created from the 

original dataset. Recall that, in random forest models, each tree is built on an 

independently bootstrapped sample (also referred to as bagging), but this is 

not the only approach we can create a new dataset from the original dataset. 

For instance, in Adaboost (illustrated in pseudo code below Figure 7.22), the 

sample for a base model is not independently created. Rather, it also depends 

on the error rates from previous base models. In other words, it takes an 

adaptive and sequential approach to grow its base models, while later models 

more focus on the hard data points that present challenges for previous base 

models to achieve good prediction performance.  

 
Figure 7.22: A general framework of ensemble learning 
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AdaBoost algorithm for two-class classification problems 

Given 𝑁 data points (𝑥1,𝑦1), (𝑥2,𝑦2), …, (𝑥𝑁,𝑦𝑁), build 𝑇trees 

Initialize equal weights for all data points 𝑤1 = (
1

𝑁
, … ,

1

𝑁
) 

For 𝑡 in 1 to 𝑇 

    Build base learner ℎ𝑡 on the data points with weights 𝑤𝑡 

    Calculate weighted error 𝜖𝑡 = ∑ 𝑤𝑡,𝑛{ℎ𝑡(𝑥𝑛) ≠ 𝑦𝑛}
𝑁
𝑛=1  

    Calculate coefficient for ℎ𝑡: 𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
) 

    Updated weights: 𝑤𝑡+1,𝑖 =
𝑤𝑡,𝑖

𝑍𝑡
∗ {
𝑒−𝛼𝑡  𝑖𝑓 ℎ𝑡(𝑥𝑛) = 𝑦𝑛 

𝑒𝛼𝑡  𝑖𝑓 ℎ𝑡(𝑥𝑛) ≠ 𝑦𝑛
 

where 𝑍𝑡 is a normalization factor so that  ∑ 𝑤𝑡+1,𝑛
𝑁
𝑛=1  = 1 

Calculate final decision: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)
𝑇
𝑡=1 ) 

 

 

III.2 Theory/Method 

As shown in Figure 7.22, the ensemble learning is very flexible as different 

approaches could be combined to create new samples and build new base 

models. It has been known that ensemble learning is very powerful in 

practices and has been reported as the winner methods in numerous data 

science competitions. Just like SVM, it is another main approach to handle 

the risk of overfitting in practice. Here, we use the framework proposed by 

Dietterich (2000)1, where three perspectives (statistical, computational, and 

representational) were articulated to explain why ensemble methods could 

lead to excellent accuracy performance. Each perspective is described in 

detail below.  

 

Statistical perspective: The statistical reason is illustrated in Figure 7.23. 

ℋ is the hypothesis space where a learning algorithm searches for the best 

one guided by the training data. 𝑓 is the true function. The statistical problem 

occurs when there are limited data, and there are multiple best hypotheses. 

                                                      
1 Dietterrich, T.G. Ensemble methods in machine learning. Multiple classifier systems, 2000. 
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In other words, multiple models can achieve the best accuracy on the training 

data. This is illustrated by the inner circle in Figure 7.23. By building an 

ensemble of multiple learners, e.g., ℎ1 , ℎ2 , and ℎ3 , the average of the 

hypotheses is a good approximation to the true hypothesis  𝑓. Therefore, the 

average of the multiple hypotheses essentially approximates a solution with 

the minimum variance in the inner circle.  

 

 
Figure 7.23: Ensemble learning approximates the true model with a 

combination of good models (statistical perspective) 

 

 
Figure 7.24: Ensemble learning approximates the true model with a 

combination of good models (computational perspective) 

 

Computational perspective: A computational perspective is shown in 

Figure 7.24. This is related to the way we build base models, which is usually 

a greedy approach such as the recursive splitting procedure we have shown 

in decision tree models. Many machine learning models are complex models 
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that present NP-hard optimization problems in training these models 

including neural networks and decision tree models. E.g., in decision trees, at 

each node, the node is split according to the maximum information gain. 

However, only the current node is evaluated, and it may result in suboptimal 

situations for further splitting of descendant nodes. Growing an optimal tree 

model is thus NP-hard and computationally expensive. This computational 

prospective is shown in Figure 7.24, while the learning algorithm of greedy 

and heuristic nature with a certain parameter setting searches for the best 

hypothesis in the hypothesis space. The search paths of three hypotheses are 

illustrated in Figure 7.24. The differences of the three hypotheses can be 

attributed to different parameter settings or different input data (e.g., 

bootstrap samples). However, growing multiple learning algorithms and 

averaging them in joint decision makings, may reasonably approximate the 

true hypothesis 𝑓.  

 

 
Figure 7.25: Ensemble learning approximates the true model with a 

combination of good models (representational perspective) 

 

Representational perspective: Due to the size of the dataset or the 

limitations of a learning algorithm, sometimes the hypothesis space ℋ does 

not cover the true function, as shown in Figure 7.25. For example, linear 

models cannot learn non-linear patterns, and decision trees with limited data 

have difficulty learning linear patterns. Using a weighted sum of the outcomes 

from the base learners may be able to approximate a function outside ℋ. 
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This is shown in Figure 7.25, while the true function 𝑓 is outside the space, 

but a combination of ℎ1, ℎ2 and ℎ3 can approximate the true function.  

Now we discuss three methods, single decision trees, random forests, and 

AdaBoost (adaptive boosting) under the framework of ensemble learning. 

Single decision tree: A single decision tree lacks capability to overcome 

overfitting in terms of all the three perspectives. From the statistical 

perspective, a decision tree algorithm constructs each node using the 

maximum information gain and is sensitive to the training data. While the 

training dataset is limited, the possible models achieving the best accuracy 

can be large. Consequently, the learning algorithm may end up with any one 

of these models, which maybe far away from the true hypothesis.   

Single decision trees also have the computational issue. Decision trees are 

greedy implementations, seeking for maximum impurity gain at each node. 

Decisions made in upstream nodes would affect downstream nodes very 

much. And it is NP-hard to find an optimal decision tree which achieves the 

maximum impurity gain at all nodes.  

Representational perspective also shows limitations of the decision tree 

model. Although decision trees can approximate a wide range of functions, 

it needs sufficient data to achieve an accurate approximation. Given limited 

training data, the possible hypothesis space of a single decision tree may not 

be able to cover the true function, e.g., if the true function is a linear or any 

smooth function.  

 

Random forests: Random forests construct multiple hypotheses by two 

ways. First, each tree in random forests is built on a different bootstrapped 

sample. Actually, this framework that builds each base learner based on a 

bootstrapped sample is referred to as bagging in general. Second, at each 

node, a subset of variables is randomly selected and the best variable from 

the subset is used for splitting. It addresses the statistical issue. Note that, 

each tree is injected with randomness, and therefore, is not necessarily in the 

best-accuracy hypothesis circle, but lies in the hypothesis space with 

reasonably good accuracy. Averaging the outcomes from all trees (or 
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hypotheses) would achieve the minimum variance in the reasonably-good-

accuracy space. Assuming the best-accuracy space has a similar shape with 

the reasonably-good space just with a smaller size, the solution may also 

achieve a reasonably small variance in the best-accuracy space. This is 

illustrated in Figure 7.26. 

 

 

Figure 7.26: Analysis of the random forest in terms of the statistical 

perspective 

 

 

Figure 7.27: Analysis of the random forest in terms of the computational 

perspective 

 

Random forests can also address the computational issue. As shown in 

Figure 7.27, the inner circle represents the space that is computationally 

difficult to reach. However, averaging multiple hypotheses could get into the 

inner space.  
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Random forests do not necessarily, or actively, solve the representational 

issue. If the true function lies outside ℋ, averaging the outcomes from all 

trees won’t necessarily approximate the true function. Figure 7.28 shows that 

random forests would construct multiple hypotheses that randomly spread 

over the ℋ space. Averaging them won’t reach the true function 𝑓. 

 

 
Figure 7.28: Analysis of the random forest in terms of the representational 

perspective 

 

 
Figure 7.29: Analysis of the AdaBoost in terms of the representational 

perspective 

 

AdaBoost: Unlike random forests that build each tree independently, 

AdaBoost builds trees sequentially. For each tree, the training dataset is 

sampled not by bootstrap, but by a weight determined by the error rates from 

previous trees. Data points that are difficult to be correctly predicted by the 

previous trees will be given more weights in the new training dataset for new 
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trees. When all the base learners are trained, the aggregation of these models 

in predicting on a data instance 𝒙 is a weighted sum of base learners 

ℎ(𝒙) = ∑ 𝑤𝑖ℎ𝑖(𝒙)𝑖 , 

where the weight 𝑤𝑖 is determined by the accuracy of learner ℎ𝑖(𝒙). 

Similar to random forests, AdaBoost solves the computational issue by 

generating many base learners that are built on randomly generated datasets. 

Different from random forests, AdaBoost actively solves the representational 

issue as it tries to reduce the residual errors coming from previous trees. 

Figure 7.29 shows that, AdaBoost could construct more hypotheses around 

the true function, and also could put more weight to the hypotheses that are 

closer to the true function by using the weighted sum of base learners in 

aggregation of the base learners.  

But AdaBoost is not as good as random forests in terms of addressing the 

statistical issue. AdaBoost handles the overfitting issue through the concept 

of margin. Suppose each data point is labeled as -1 or 1, then the margin of 

a classifier of a data point (𝑥𝑖, 𝑦𝑖) is defined as  

𝑚𝑖 = 𝑦𝑖ℎ(𝑥𝑖). 

It can be shown that AdaBoost tries to minimize  

∑ exp (−𝑦𝑖 ∑ 𝑤𝑗ℎ𝑗(𝑥𝑗)𝑗 )𝑖 , 

which can be considered as an effort to minimize the margin on the training 

data. However, as AdaBoost aggressively solves the representational issue, 

and optimizes for the training data, it is more likely to overfit, and may be 

less stable than random forests that place more emphasis on addressing the 

statistical issue.  

 

 

III.3 R Lab 

A single decision tree (rpart), random forests (randomForest), and 

AdaBoost (gbm) are applied to the AD dataset AD_bl.csv. First, we change 

the percentage of training data, and 50 replicates of data are generated.  The 

boxplots of the classification error rates for single decision tree, random 
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forests, and AdaBoost are plotted at different percentages of training data by 

the following R code, which is shown in Figure 7.30. 

theme_set(theme_gray(base_size = 15)) 
 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
")) 
data <- data[, -rm_indx] 
data$DX_bl <- as.factor(data$DX_bl) 
 
set.seed(1) 
 
err.mat <- NULL 
for (K in c(0.2, 0.3, 0.4, 0.5, 0.6, 0.7)) { 
     
    testing.indices <- NULL 
    for (i in 1:50) { 
        testing.indices <- rbind(testing.indices, sample(nrow(dat
a), floor((1 -  
            K) * nrow(data)))) 
    } 
     
    for (i in 1:nrow(testing.indices)) { 
         
        testing.ix <- testing.indices[i, ] 
        target.testing <- data$DX_bl[testing.ix] 
         
        tree <- rpart(DX_bl ~ ., data[-testing.ix, ]) 
        pred <- predict(tree, data[testing.ix, ], type = "class") 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("tree", K, error)) 
         
        rf <- randomForest(DX_bl ~ ., data[-testing.ix, ]) 
        pred <- predict(rf, data[testing.ix, ]) 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("RF", K, error)) 
         
        data1 <- data 
        data1$DX_bl <- as.numeric(as.character(data1$DX_bl)) 
        boost <- gbm(DX_bl ~ ., data = data1[-testing.ix, ], dist
 = "adaboost",  
            interaction.depth = 6, n.tree = 2000)  #cv.folds = 5,
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        # best.iter <- gbm.perf(boost,method='cv') 
        pred <- predict(boost, data1[testing.ix, ], n.tree = 200
0, type = "response")  # best.iter n.tree = 400,  
        pred[pred > 0.5] <- 1 
        pred[pred <= 0.5] <- 0 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("AdaBoost", K, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "training_percent", "error") 
err.mat <- err.mat %>% mutate(training_percent = as.numeric(as.ch
aracter(training_percent)),  
    error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(training_percen
t = as.factor(training_percent)),  
    aes(y = error, x = training_percent, color = method)) + geom_
point(size = 3) 

 

 
Figure 7.30: Boxplots of the classification error rates for single decision 

tree, random forests, and AdaBoost 

 

It can be seen in Figure 7.30 that, all error rates are reduced as the 

percentage of the training data increases. The single decision tree is clearly 

less accurate than the other two ensemble methods. RF has lower error rates 

than AdaBoost in general. However, as the training data size increases, the 
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gap between RF and AdaBoost seems to decrease slightly. This may indicate 

that when the training data size is small, RF is more stable due to its advantage 

of addressing the statistical issue.  

Now we add model complexity to each model to see its impacts on the 

models’ performance. First, we change the complexity parameter (cp) in 

decision tree. A smaller cp indicates a larger tree. It can be seen that the error 

rate decreases when the tree gets more complex, and only slightly increases 

after cp is greater than 0.02. This may indicate that, for this dataset, the main 

issue for decision tree may stem from the representational perspective, 

meaning that, a single decision is not able to capture enough information (as 

much as ensemble methods) using the training data. But the statistical issue 

is not severe, given that the error does not increase substantially given a 

complexity parameter value that could result in a large tree.  

set.seed(1) 
testing.indices <- NULL 
for (i in 1:50) { 
    testing.indices <- rbind(testing.indices, sample(nrow(data), 
floor((0.3) *  
        nrow(data)))) 
} 
 
 
err.mat <- NULL 
for (i in 1:nrow(testing.indices)) { 
    testing.ix <- testing.indices[i, ] 
    target.testing <- data$DX_bl[testing.ix] 
     
    cp.v <- rev(c(0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.
08, 0.09, 0.1)) 
    for (j in cp.v) { 
        tree <- rpart(DX_bl ~ ., data[-testing.ix, ], cp = j) 
        pred <- predict(tree, data[testing.ix, ], type = "class") 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("Tree", j, error)) 
    } 
} 
 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "cp", "error") 
err.mat <- err.mat %>% mutate(cp = as.numeric(as.character(cp)), 
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error = as.numeric(as.character(error))) 
err.mat$cp <- factor(err.mat$cp, levels = sort(cp.v, decreasing =
 TRUE)) 
 
 
ggplot() + geom_boxplot(data = err.mat, aes(y = error, x = cp, co
lor = method)) +  
    geom_point(size = 3) 

 

 

Figure 7.31: Boxplots of the classification error rates for single decision 

tree models with different model complexity (by controlling cp) 

 

 
Figure 7.32: Boxplots of the classification error rates for AdaBoost with 

different number of trees 
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We also adjust the number of trees in AdaBoost and show the results in 

Figure 7.32. It can be seen that the error rates first go down as the number 

of trees increases to 400. However, the error rates increase after that, and 

decrease again. This may indicate that AdaBoost still have a statistical issue 

as the error rates are not stable.   

err.mat <- NULL 
set.seed(1) 
for (i in 1:nrow(testing.indices)) { 
    data1 <- data 
    data1$DX_bl <- as.numeric(as.character(data1$DX_bl)) 
    ntree.v <- c(200, 300, 400, 500, 600, 800, 1000, 1200, 1400, 
1600, 1800,  
        2000) 
    for (j in ntree.v) { 
        boost <- gbm(DX_bl ~ ., data = data1[-testing.ix, ], dist
 = "adaboost",  
            interaction.depth = 6, n.tree = j) 
        # best.iter <- gbm.perf(boost,method='cv') 
        pred <- predict(boost, data1[testing.ix, ], n.tree = j, t
ype = "response") 
        pred[pred > 0.5] <- 1 
        pred[pred <= 0.5] <- 0 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("AdaBoost", j, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "num_trees", "error") 
err.mat <- err.mat %>% mutate(num_trees = as.numeric(as.character
(num_trees)),  
    error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(num_trees = as.
factor(num_trees)),  
    aes(y = error, x = num_trees, color = method)) + geom_point(s
ize = 3) 

Now let’s look at random forests with different number of trees. Results 

are shown in Figure 7.33. Similar to AdaBoost, RF has high error rates 

initially at a small number of trees. Then, the error rates are reduced as more 
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trees are added. However, the error rates become stable when more trees are 

added. This may indicate that RF handles the statistical issue well.  

 

 

Figure 7.33: Boxplots of the classification error rates for random forest 

with different number of trees 

 

err.mat <- NULL 
set.seed(1) 
for (i in 1:nrow(testing.indices)) { 
    testing.ix <- testing.indices[i, ] 
    target.testing <- data$DX_bl[testing.ix] 
     
    ntree.v <- c(5, 10, 50, 100, 200, 400, 600, 800, 1000) 
    for (j in ntree.v) { 
        rf <- randomForest(DX_bl ~ ., data[-testing.ix, ], ntree 
= j) 
        pred <- predict(rf, data[testing.ix, ]) 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("RF", j, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "num_trees", "error") 
err.mat <- err.mat %>% mutate(num_trees = as.numeric(as.character
(num_trees)),  
    error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(num_trees = as.
factor(num_trees)),  
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    aes(y = error, x = num_trees, color = method)) + geom_point(s
ize = 3) 

Recall that, a requirement to solve the statistical issue in random forests 

is that a diverse set of learners need to be built. As we have mentioned, in 

random forests, there are two approaches to increase diversity, one is to 

bootstrap samples for each tree while another one is to conduct random 

feature selection for splitting each node. First, we investigate the effectiveness 

of using randomly bootstrapped samples. We change sampling strategy from 

sampling with replacement to sampling without replacement, and change the 

sampling size from 10% to 100% (with the number of features tested at each 

node being the default value of √𝑝
2  where 𝑝 is the number of features). The 

results as shown in Figure 7.34 do not show that the increased sample size 

has an impact on the error rates on this particular dataset.  

err.mat <- NULL 
set.seed(1) 
for (i in 1:nrow(testing.indices)) { 
    testing.ix <- testing.indices[i, ] 
    target.testing <- data$DX_bl[testing.ix] 
     
    sample.size.v <- seq(0.1, 1, by = 0.1) 
    for (j in sample.size.v) { 
        sample.size <- floor(nrow(data[-testing.ix, ]) * j) 
        rf <- randomForest(DX_bl ~ ., data[-testing.ix, ], sampsi
ze = sample.size,  
            replace = FALSE) 
        pred <- predict(rf, data[testing.ix, ]) 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("RF", j, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "sample_size", "error") 
err.mat <- err.mat %>% mutate(sample_size = as.numeric(as.charact
er(sample_size)),  
    error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(sample_size = a
s.factor(sample_size)),  
    aes(y = error, x = sample_size, color = method)) + geom_point
(size = 3) 
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Figure 7.34: Boxplots of the classification error rates for random forest 

with different sample sizes 

 

We then set the number of samples used at each tree the same as the size 

of the original training data set, and change the number of features in growing 

the random forest models. As shown in Figure 7.35, we can see that when 

the number of features is sufficiently large, the error rates start to increase, 

which could be due to a low diversity and indicate its compromised capability 

to address the statistical issue. 

err.mat <- NULL 
set.seed(1) 
for (i in 1:nrow(testing.indices)) { 
    testing.ix <- testing.indices[i, ] 
    target.testing <- data$DX_bl[testing.ix] 
     
    num.fea.v <- 1:(ncol(data) - 1) 
    for (j in num.fea.v) { 
        sample.size <- nrow(data[-testing.ix, ]) 
        rf <- randomForest(DX_bl ~ ., data[-testing.ix, ], mtry =
 j, sampsize = sample.size,  
            replace = FALSE) 
        pred <- predict(rf, data[testing.ix, ]) 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("RF", j, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
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colnames(err.mat) <- c("method", "num_fea", "error") 
err.mat <- err.mat %>% mutate(num_fea = as.numeric(as.character(n
um_fea)), error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(num_fea = as.fa
ctor(num_fea)),  
    aes(y = error, x = num_fea, color = method)) + geom_point(siz
e = 3) 

 

 

Figure 7.35: Boxplots of the classification error rates for random forest 

with different number of features 

 

In the next experiment, we fix the number of tested features to be the 

total number of variables, and change the percentage of samples to be used 

at each tree. As shown in Figure 7.36, the error rate is relatively large when 

the percentage of samples is small (10%). But as more samples are used, the 

error rates increase, and reach the highest error rate when 100% of the 

samples are used (i.e., which leads to least diversity among the base learners).  

err.mat <- NULL 
set.seed(1) 
for (i in 1:nrow(testing.indices)) { 
    testing.ix <- testing.indices[i, ] 
    target.testing <- data$DX_bl[testing.ix] 
     
    sample.size.v <- seq(0.1, 1, by = 0.1) 
    for (j in sample.size.v) { 
        traing.data <- data[-testing.ix, ] 
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        sample.size <- floor(nrow(traing.data) * j) 
        rf <- randomForest(DX_bl ~ ., traing.data, mtry = ncol(tr
aing.data) -  
            1, sampsize = sample.size, replace = FALSE) 
        pred <- predict(rf, data[testing.ix, ]) 
        error <- length(which(as.character(pred) != target.testin
g))/length(target.testing) 
        err.mat <- rbind(err.mat, c("RF", j, error)) 
    } 
} 
err.mat <- as.data.frame(err.mat) 
colnames(err.mat) <- c("method", "num_fea", "error") 
err.mat <- err.mat %>% mutate(num_fea = as.numeric(as.character(n
um_fea)), error = as.numeric(as.character(error))) 
 
ggplot() + geom_boxplot(data = err.mat %>% mutate(num_fea = as.fa
ctor(num_fea)),  
    aes(y = error, x = num_fea, color = method)) + geom_point(siz
e = 3) 

 

 
Figure 7.36: Boxplots of the classification error rates for random forest 

with different sample sizes 

 

IV. Exercises 

Data analysis 

1. Find ten classification datasets from the UCI data repository or R 

datasets. Conduct a detailed analysis using the logistic regression 

model, SVM, decision tree, random forest, and AdaBoost. Conduct 
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model selection and validation. Use cross-validation to select the 

best models. Conduct residual analysis of your final models, and 

comment on your results.    

 

Programming  

2. Write your own R script to implement the linear SVM model. 

3. Extend your SVM code to nonlinear SVM models with Gaussian 

kernel and polynomial kernel. Compare your results with ksvm().  

4. Write your own R script to implement the AdaBoost model. 

Compare your results with gbm(). 



 

 

 

 

 

 

CHAPTER 8: SCALABILITY  
LASSO AND PCA   

 

 

 

 

 

I. Overview 

Chapter 8 is about “Scalability”. It is to enhance our capacity to deal with 

large-scale problems – strength to be scalable. LASSO and PCA will be 

introduced in this chapter. LASSO stands for the Least Absolute Shrinkage 

and Selection Operator, which is a main representative method for feature 

selection. PCA stands for the Principle Component Analysis, which is a main 

representative method for dimension reduction. Both methods can reduce 

the dimensionality of the dataset, but follow different styles. LASSO, as a 

feature selection method, focuses on deletion of irrelevant or redundant 

features in the dataset. PCA, as a dimension reduction method, keeps all the 

features but combine them into a smaller number of aggregated new features.  
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II. LASSO 

II.1 Rationale and Formulation 

LASSO was invented in 1996 1  that was used to sparsify the linear 

regression model and allowed the regression model to select significant 

predictors automatically. The formulation of LASSO is 

�̂� = argmin
𝜷
{‖𝒚 − 𝐗𝜷‖2

2 + 𝜆‖𝜷‖1}, 

where 𝒚 ∈ ℝ𝑁×1 is the measurement vector of the response, 𝐗 ∈ ℝ𝑁×𝑝 is 

the data matrix of the 𝑁  measurement vectors of the 𝑝  predictors, 𝜷 ∈

ℝ𝑝×1 is the regression coefficient vector. Here, ‖𝜷‖1 = ∑ |𝛽𝑖|
𝑝
𝑖=1 . Note that, 

here, the intercept (i.e., 𝛽0) is not included, since we assume that the data is 

normalized (i.e., ∑ 𝑥𝑛𝑗/𝑁
𝑁
𝑛=1 = 0, ∑ 𝑥𝑛𝑗

2 /𝑁𝑁
𝑛=1 = 1 for 𝑗 = 1,2, … , 𝑝 and 

∑ 𝑦𝑛/𝑁
𝑁
𝑛=1 = 0), and thus, the intercept is not needed.   

 

Figure 8.1: Path solution trajectory of the coefficients of LASSO, 

identifying brain regions that show longitudinal declines that can separate 

early-stage Alzheimer’s patients from normal elderly.  

 

                                                      
1 Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society (Series B), 1996. 
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It could be seen that LASSO embodies two major components in its 

formulation. The 1st term is the least squares loss function from linear 

regression, that is used to measure the goodness-of-fit of the model. The 2nd 

term is the sum of absolute values of the elements in 𝜷, representing the 

model complexity, i.e., the smaller the ‖𝜷‖1, more zeros in 𝜷, leading to a 

simpler model. The parameter, 𝜆 , is called the penalty parameter that is 

specified by user of LASSO. In other words, LASSO suggests the best model 

by an optimal balance between model fit and model complexity, and this 

balance could be flexibly tuned by tuning the parameter 𝜆. Furthermore, as 

shown in Figure 8.1, LASSO can generate the path solution trajectory that 

visualizes the solutions of 𝜷 for a continuum of values of 𝜆, giving us a global 

sense of the relationships between variables. Also, model selection criteria 

such as Akaike Information Criteria (AIC) or cross-validation can be used to 

identify the best 𝜆. 

 

II.2 Theory and Method 

Why LASSO uses the L1 norm: The popularity of LASSO and its 

enormous impact on statistical/machine learning research in the last decade 

needs no exaggeration. Some researchers in optimization and operations 

research often found puzzling is why all of sudden LASSO was invented and 

gave birth to the area of sparse learning. To answer this question, LASSO is 

often compared with another similar model, called Ridge regression1 that 

has been developed almost half a century ago.  

The formulation of Ridge regression is 

�̂� = argmin
𝜷
{‖𝒚 − 𝐗𝜷‖2

2 + 𝜆‖𝜷‖2}, 

where ‖𝜷‖2 = ∑ |𝛽𝑖|
2𝑝

𝑖=1  is called the 𝐿2 norm. 

                                                      
1  Hoerl, A.E. and Kennard, R.W. Ridge regression: biased estimation for 

nonorthogonal problems. Technometrics, 1970. 
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At the first glance, it seems that the Ridge regression bears the same spirit 

of LASSO – they both penalize the magnitudes of the regression parameters. 

However, it has been noticed that, in the Ridge regression model, the 

regression parameters in 𝜷 will not achieve exactly zero. Even if you impose 

a very large 𝜆, many elements in 𝜷 may be close to zero with a very tiny 

numerical magnitude, but not zero. Although the numerical magnitudes of 

these elements are close to zero, and thus, seems to be insignificant, they are 

still in the estimation system and generate impacts on the estimation of other 

regression parameters. Thus, it is often reported that when you run Ridge 

regression and LASSO regression, you may not observe the same set of 

predictors that are selected by both methods. Ridge regression is more often 

used as a stabilization strategy to handle the multicollinearity issue or any 

other issues that result in numerical instability in parameter estimation, while 

LASSO is used as a variable selection strategy.  

Shooting algorithm to solve the optimization problem of LASSO: 

We could denote the objective function of LASSO as  

𝐿(𝜷) = ‖𝒚 − 𝐗𝜷‖2
2 + 𝜆‖𝜷‖1. 

To see how the LASSO can be iteratively solved, let’s first consider a 

simple case where there is only one predictor. Then, the objective function 

becomes 

𝐿(𝛽) = ‖𝒚 − 𝐗𝛽‖2
2 + 𝜆|𝛽|. 

To find the optimal solution, we can solve the equation as 

𝜕𝐿(𝛽)

𝜕𝛽
= 0. 

The complication is the L1-norm term, |𝛽|, which has no gradient when 

𝛽 = 0. Thus, we can discuss different scenarios and identify the solutions. 
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 If 𝛽 > 0 , then 
𝜕𝐿(𝛽)

𝜕𝛽
= 2𝛽 − 2𝐗𝑇𝒚 + 𝜆 . Thus, 

𝜕𝐿(𝛽)

𝜕𝛽
= 0  will 

lead to the solution that 𝛽 =
(2𝐗𝑇𝒚−𝜆)

2
. But if 2𝐗𝑇𝒚 − 𝜆 < 0, 

this will result in a contradiction, and thereby, 𝛽 = 0. 

 If 𝛽 < 0, then 
𝜕𝐿(𝛽)

𝜕𝛽
= 2𝛽 − 2𝐗𝑇𝒚 − 𝜆. Similarly as above, we 

can conclude that 𝛽 =
(2𝐗𝑇𝒚+𝜆)

2
. But if 2𝐗𝑇𝒚 + 𝜆 > 0, this will 

result in a contradiction, and thereby, 𝛽 = 0. 

 If 𝛽 = 0, then we have had the solution and no longer need the 

calculate the gradient. 

In summary, we can derive the solution of 𝛽 as 

�̂� =

{
 
 

 
 
(2𝐗𝑇𝒚−𝜆)

2
, 𝑖𝑓2𝐗𝑇𝒚 − 𝜆 > 0 

(2𝐗𝑇𝒚+𝜆)

2
, 𝑖𝑓2𝐗𝑇𝒚 + 𝜆 < 0

0,           𝑖𝑓 𝜆 ≥ |2𝐗𝑇𝒚|

. 

Now we are ready to generalize this practice to general case with more 

predictors.  

The spirit is to keep as much the easiness of solving for one predictor as 

we derived above as possible. Thus, revealing the resemblance of the general 

problem with our one-predictor special problem is important. Particularly, 

we decide to follow an iterative structure that updates each 𝛽𝑗 at a time when 

fixing all the other parameters as their latest values. Thus, suppose that we 

are now at the 𝑡th iteration and we are trying to optimize for 𝛽𝑗 , we can 

rewrite the general optimization problem’s objective function as a function 

of 𝛽𝑗 

𝐿(𝛽𝑗) = ‖𝒚 − ∑ 𝐗(:,𝑘)𝛽𝑘
(𝑡−1)

𝑘≠𝑗 − 𝐗(:,𝑗)𝛽𝑗‖
2

2
+ 𝜆∑ |𝛽𝑘

(𝑡−1)
|𝑘≠𝑗 + 𝜆|𝛽𝑗|. 

Here, 𝛽𝑘
(𝑡)

 is the value of 𝛽𝑘  in the 𝑡th iteration. The objective function 

above can be simplified as 
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𝐿(𝛽𝑗) = ‖𝒚 − 𝐗(:,𝑗)𝛽𝑗‖2
2
+ 𝜆|𝛽𝑗|, 

which just resembles the structure as the one-predictor special case we 

discussed. Thus, we can readily derive that  

�̂�𝑗
(𝑡)
= {

𝑞𝑗 − 𝜆 2⁄ , 𝑖𝑓𝑞𝑗 − 𝜆 2⁄ > 0 

𝑞𝑗 + 𝜆 2⁄ , 𝑖𝑓𝑞𝑗 + 𝜆 2⁄ < 0

0,           𝑖𝑓 𝜆 ≥ |2𝑞𝑗|

, 

where 𝑞𝑗 = 𝐗(:,𝑗)
𝑇 (𝒚 − ∑ 𝐗(:,𝑘)𝛽𝑘

(𝑡−1)
𝑘≠𝑗 ). 

An Example to implement the Shooting algorithm: Here let’s 

consider one exemplary data as shown in below. 

 

Table 8.1: A dataset example for LASSO 

𝑋1 𝑋2 𝑌 

-0.707 0 -0.77 

0 0.707 -0.33 

0.707 -0.707 0.62 

 

The dataset of 𝑌 is actually randomly sampled from the true model,  

𝑌 = 0.8𝑋1 + 𝜀,  where 𝜀~𝑁(0,0.5). 

Thus, it can be seen that the variable 𝑋2 is irrelevant.  

Now let’s implement the Shooting algorithm for LASSO on this data. The 

objective function of LASSO on this case is 

∑ [𝑦𝑛 − (𝛽1𝑥𝑛,1 + 𝛽2𝑥𝑛,2)]
2𝑁

𝑛=1 + 𝜆(|𝛽1| + |𝛽2|). 

Note that, here, for simplicity, we don’t need to include the offset 

parameter 𝛽0 in the model as the predictors are standardized with mean as 

zero. 
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 Suppose that we choose 𝜆 = 0.88 . First, we initiate the regression 

parameters as �̂�1
(0)
= 0 and �̂�1

(0)
= 0. 

In the first iteration, we aim to update �̂�1. We can obtain that 

𝒚 − 𝐗(:,2)�̂�2
(0)
= [

−0.71
−1.037
1.327

]. 

Thus,  

𝑞1 = 𝐗(:,1)
𝑇 (𝒚 − 𝐗(:,2)�̂�2

(0)
) = 1.44. 

As  

𝑞1 − 𝜆 2⁄ = 1 > 0, 

we know that  

�̂�1
(1)
= 𝑞1 − 𝜆 2⁄ = 1. 

Similarly, we can update �̂�2. We can obtain that 

𝒚 − 𝐗(:,1)�̂�1
(0)
= [

−1.477
−0.33
−0.087

]. 

Thus,  

𝑞2 = 𝐗(:,1)
𝑇 (𝒚 − 𝐗(:,1)�̂�1

(0)
) = −0.178. 

As  

𝜆 ≥ |2𝑞2|, 

we know that  

�̂�2
(1)
= 0. 

Thus, on this simple example, with only one iteration, the LASSO method 

can identify the irrelevant variable and delete it from the model.  
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II.3 R Lab 

In what follows, we apply LASSO on an extended AD dataset that has 

329 variables. It includes 313 variables that are derived from the MRI images 

of the subjects, corresponding to the grey matter volumes of 313 brain 

regions. We have known that many of these variables are correlated with each 

other as our prior knowledge. Also, depending on the outcome to predict, 

not all the brain regions are useful. Thus, this extended AD dataset provides 

a good example for us to showcase the use of LASSO and PCA. 

First, let’s load the data into the R workspace: 

# Chapter 8 Dataset of Alzheimer's Disease Objective: prediction 
of 
# diagnosis filename 
AD <- read.csv("AD_hd.csv", header = TRUE) 

This time, let’s formulate an interesting prediction question: can we use 

the MRI readings to predict the age of the subject. Using the following R 

code, we may get a sense of the relationship of the variables by drawing the 

scatterplots of variables that correlate with the outcome variable “AGE” most 

strongly according to the Pearson correlation.  

# Supplement the model with some visualization of the statistical
 patterns 
# Scatterplot matrix to visualize the relationship between outcom
e variable 
# with continuous predictors 
require(ggplot2) 
# install.packages('GGally') 
require(GGally) 
# draw the scatterplots and also empirical shapes of the distribu
tions of 
# the variables 
tempRank <- sort(abs(cor(AD[, 5], AD[, 17:329])), decreasing = TR
UE, index.return = TRUE) 
p <- ggpairs(AD[, c(5, 16 + tempRank$ix[1:8])], upper = list(cont
inuous = "points"),  
    lower = list(continuous = "cor")) 
print(p) 
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Then we can see that, the correlations between the MRI variables with 

AGE are significant, and the correlations among the MRI variables are also 

strong, which confirms with our prior knowledge and also indicates 

significant redundancy in the variables.  

 

 

Figure 8.2: Scatterplots of some MRI variables 

 

Now let’s split the data into training and testing datasets.  

AD[, 17:dim(AD)[2]] <- scale(AD[, 17:dim(AD)[2]]) 
# Use the glmnet R pacakge to build LASSO model split into traini
ng and test 
# sets 
AD$train <- ifelse(runif(nrow(AD)) < 0.8, 1, 0) 
# separate training and test sets 
trainset <- AD[AD$train == 1, -grep("train", names(AD))] 
testset <- AD[AD$train == 0, -grep("train", names(AD))] 
trainX <- as.matrix(trainset[, 17:dim(trainset)[2]]) 
testX <- as.matrix(testset[, 17:dim(testset)[2]]) 
trainY <- as.matrix(trainset[, 5]) 
testY <- as.matrix(testset[, 5]) 
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The glmnet package can be used to implement the LASSO method: 

# build model install.packages('glmnet') 
require(glmnet) 
fit = glmnet(trainX, trainY, nlambda = 100) 

We can use the plot() function to see the path solution trajectory of the 

regression coefficients by LASSO for different values of lambda, as shown 

in Figure 8.3. 

plot(fit, label = TRUE) 

 

Figure 8.3: Path solution trajectory of the regression coefficients by 

LASSO 

 

The numerical details of the trained LASSO regression models can also 

be seen by print(fit). Here, we skip the output due to space limit. As we 

have seen, the glmnet trained not only one LASSO model, but 100 models 

by default. We could use coef() to query details of each of the models. For 

example, coef(fit, s = 0.05) queries the model that has lambda = 0.05.  

We draw the histogram of the Pearson correlations of the selected 

variables in this model, which is shown in Figure 8.4. 
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# Check out the marginal correlations between the selected variab
les with 
# the outcome 
idx.var <- which(coef(fit, s = 0.05) != 0) - 1 
tempData <- as.numeric(abs(cor(trainY, trainX[, idx.var]))) 
qplot(tempData, geom = "histogram") 

 

 

Figure 8.4: Histogram of the Pearson correlations of the selected variables 

with AGE 

 

Figure 8.5: Histogram of the Pearson correlations of all variables with AGE 
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We can see that, the LASSO model is a multivariate method that selects 

variables not only based on their marginal correlations with the outcome, but 

also their syngeneic effects. Figure 8.5 shows the histogram of the Pearson 

correlations of all variables for a contrast. 

# Compare with the overview of the correlations between variables
 with the 
# outcome 
tempData <- as.numeric(abs(cor(trainY, trainX))) 
qplot(tempData, geom = "histogram") 

The predict() function can be used to predict on the testing dataset 

using different models.  

# Predict on the testing data 
predict(fit, newx = testX, s = c(0.1, 0.2, 0.4)) 

##           1        2        3 
## 3  81.24935 81.23730 78.97272 
## 9  69.19876 69.64454 70.43511 
## 17 69.89315 68.66627 67.34304 
## 19 72.01627 70.19499 71.69000 
## 29 73.75759 71.94729 71.05652 
## 30 67.57181 67.22865 67.62802 
## 31 69.72086 69.79635 71.41110 
## 38 70.65147 72.04312 73.13276 
## 39 84.74255 84.62814 84.28301 
## 45 71.88253 71.29639 69.67876 
## 48 74.83788 74.96710 72.61464 
## 52 66.70134 69.83361 71.03180 
## 53 72.42933 71.19085 72.60041 
## 61 73.11982 73.33213 75.97945 
## 62 75.87737 74.92556 75.84209 
## 73 74.98227 75.70788 74.91021 

On the other hand, to decide on the best model, glmnet implements 10-

folder cross-validation procedure using cv.glmnet().  

# Use cross-validation to decide which model is best 
cv.fit = cv.glmnet(trainX, trainY) 
plot(cv.fit) 

The result is shown in Figure 8.6, which reveals a certain optimal point 

on which we can decide the best model. It is also noticeable that the 
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optimality of the model is not very statistically significant, probably due to 

the small sample size, or enormous heterogeneity of the AD population, or 

other data issues. 

 

Figure 8.6: MSEs by cross-validation with different values of lambda 

 

The best model can be queried by calling on the function cv.glmnet as 

shown in below (results omitted due to the space limit): 

# To view the selected variables and the corresponding coefficien
ts 
cv.fit$lambda.min 

## [1] 0.6437308 

coef(cv.fit, s = "lambda.min") 

As LASSO has picked up the variables, we can further fit a regression 

model using these variables. Here, the reason that we need to re-fit the 

regression model is that, since LASSO uses the 𝐿1  norm to push those 

insignificant predictors out of the model, it also results in shrinkage of the 

magnitudes of the predictors that are significant. This shrinkage is bias that 

makes the model less accurate in prediction. Usually, people tend to use 

LASSO for model selection only, e.g., to identify the predictors that are 
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significant. Then, with the identified predictors, a classic regression model is 

further applied on this reduced set of predictors to build the final model.  

We follow this two-step strategy. As shown in below, it can be seen that 

these variables could lead to a model that has the R-squared as large as 

0.9117. It is also possible, from the results shown in below, that the model 

can be further simplified by deleting more insignificant variables.  

# fit a linear regression model 
trainX.reduced <- data.frame(trainX[, which(coef(cv.fit, s = "lam
bda.min") !=  
    0) - 1]) 
tempData <- cbind(trainY, trainX.reduced) 
lm.AD <- lm(trainY ~ ., data = tempData) 
summary(lm.AD) 

##  
## Call: 
## lm(formula = trainY ~ ., data = tempData) 
##  
## Residuals: 
##     Min      1Q  Median      3Q     Max  
## -5.4283 -1.4383  0.4106  1.0739  3.3860  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 73.48975    0.42384 173.389  < 2e-16 *** 
## ST103CV      0.68829    0.86621   0.795  0.43404     
## ST103TA      0.82101    0.86085   0.954  0.34901     
## ST106TA     -1.73112    0.63784  -2.714  0.01164 *   
## ST106TS     -0.34535    0.60115  -0.574  0.57057     
## ST110CV     -0.99903    0.75223  -1.328  0.19569     
## ST110TA     -0.79230    0.64168  -1.235  0.22797     
## ST113SA      0.06535    0.62399   0.105  0.91740     
## ST118SA     -0.59835    0.69504  -0.861  0.39717     
## ST119CV     -1.05435    0.83192  -1.267  0.21626     
## ST119SA     -0.77869    0.77768  -1.001  0.32591     
## ST128SV      1.63101    0.69748   2.338  0.02733 *   
## ST129TS      0.98078    0.66285   1.480  0.15098     
## ST130TS     -0.11623    0.58658  -0.198  0.84446     
## ST14TS      -1.04771    0.55252  -1.896  0.06909 .   
## ST16SV       0.34340    0.72793   0.472  0.64104     
## ST17SV      -1.14047    0.57236  -1.993  0.05690 .   
## ST26TS      -0.47550    0.56765  -0.838  0.40985     
## ST35TS      -1.38430    0.53229  -2.601  0.01515 *   
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## ST39TS       1.34252    0.46659   2.877  0.00791 **  
## ST42SV       0.96528    0.56439   1.710  0.09912 .   
## ST44TS       0.61458    0.58486   1.051  0.30301     
## ST45CV      -0.59449    0.55985  -1.062  0.29806     
## ST59CV       2.02101    0.70023   2.886  0.00774 **  
## ST62TS      -0.54468    0.46893  -1.162  0.25597     
## ST74TS       0.10354    0.60269   0.172  0.86493     
## ST7SV        0.81011    0.54650   1.482  0.15027     
## ST83CV       0.80073    0.51498   1.555  0.13207     
## ST83TA      -0.20721    0.79645  -0.260  0.79678     
## ST85TS       0.84103    0.68633   1.225  0.23141     
## ST98CV      -0.03397    0.71845  -0.047  0.96265     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 2.707 on 26 degrees of freedom 
## Multiple R-squared:  0.9117, Adjusted R-squared:  0.8099  
## F-statistic:  8.95 on 30 and 26 DF,  p-value: 1.203e-07 

Note that, the glmnet package not only implements LASSO, but also 

other related models such as Ridge regression. For instance, via the R code 

below we can implement the Ridge regression by setting alpha = 0: 

# Do a ridge regression instead 
fit.ridge = glmnet(trainX, trainY, alpha = 0, nlambda = 100) 
print(fit.ridge) 

 

Figure 8.7: Path solution trajectory of the regression coefficients by Ridge 

regression 
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As shown in Figure 8.7, the path solution trajectory of the regression 

coefficients by Ridge regression has quite a different shape from the path 

solution trajectory of LASSO regression shown in Figure 8.3. 

plot(fit.ridge, xvar = "lambda", label = TRUE) 

 

Figure 8.8: Path solution trajectory of the coefficients by logistic LASSO 

 

Figure 8.9: Classification errors by cross-validation with different values of 

lambda 

 

We can also implement the idea of LASSO on logistic regression model. 

Here, we use the “DX_bl” as our outcome variable that has two classes, “NC” 

and “LMCI”, denoting for the normal aging and mild cognitive impairment, 

respectively. Note that, classifying between NC and LMCI is very challenging, 
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much more challenging than the classification between NC and AD that has 

been discussed in previous chapters, since the LMCIs are to certain degrees 

still normal individuals and are not clinically diagnosed with dementia yet. 

# Fit a LASSO model for logistic regression 
trainY <- as.matrix(trainset[, 2]) 
testY <- as.matrix(testset[, 2]) 
fit = glmnet(trainX, trainY, nlambda = 100, family = “binomial”) 
plot(fit, label = TRUE) 

Also, the cross-validation can be used to decide on the best model: 

# Use cross-validation to decide which model is best 
cv.fit = cv.glmnet(trainX, trainY, family = "binomial", type.meas
ure = "class") 
plot(cv.fit) 

As shown in Figure 8.9, a certain optimal point can be identified to decide 

on the best model. We can further output the corresponding coefficients of 

this optimal model via the R code below (results omitted due to space limit). 

# To view the selected variables and the corresponding coefficien
ts 
coef(cv.fit, s = "lambda.min") 

Similarly in LASSO, we could use predict() to predict on the testing 

dataset using any model.  

predict(cv.fit, newx = testX, s = "lambda.min") 

##              1 
## 3  -1.23155042 
## 9  -0.32381239 
## 17 -5.49829437 
## 19 -0.47832582 
## 29 -0.35677823 
## 30 -0.82189141 
## 31  0.62296595 
## 38  0.52778295 
## 39 -1.49146275 
## 45 -2.54049855 
## 48  1.07123484 
## 52 -1.27364645 
## 53  1.46493378 
## 61 -1.21799365 
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## 62 -3.32616327 
## 73  0.03668668 

 

II.4 Remark 

The shooting algorithm1 has been widely used in many extension models 

of LASSO in the statistics community. The shooting algorithm is easy to use 

and has nice interpretation of each iteration. But it could be slow in very high-

dimensional situations. Also, with more complex penalty terms such as those 

L21-norm regularization or group regularization terms, the shooting 

algorithm may not work anymore. In machine learning community where the 

computational efficiency is of particular interest, many scalable algorithms 

such as the projection operator based methods have been developed. 

Interested readers can read more of these works 2  in this direction that 

provided closed form iterative updating rules by projection operator on a 

variety of regularization terms. 

On the other hand, regarding why LASSO can produce sparse estimates 

of the regression parameters while Ridge regression could not, a deep reason 

was revealed in the “bible” book of statistical learning3. Here, we adopt an 

easy and common sense explanation (which has also been a very famous 

example) as shown in the Figure 8.10. It shows the application of LASSO 

and Ridge regression models on a problem with 2 predictors. The contour 

plot corresponds to the least squares loss function which is shared by classic 

regression model, LASSO, and Ridge models. �̂� in the center of the contour 

is the least squares estimator of the regression parameters.  

Figure 8.10 shows that why LASSO can generate sparse estimation of the 

model. As the objective function of LASSO consists of two terms, the 

                                                      
1 Fu, WJ. Penalized regressions: the bridge versus the lasso. Journal of Computational 

and Graphical Statistics, 1998. 
2 http://www.yelab.net/software/SLEP/ 
3 Hastie, T., Tibshiranim R. and Friedman, J. The elements of statistical learning, 2nd 

edition. Springer, 2009. 
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optimal solution lies on the intersection of the geometric areas corresponding 

to the two terms. As LASSO uses 𝐿1 norm, it results in those “sharp” corner 

points that mostly like to be the point of contacts of the two geometric areas. 

Those point of contacts are themselves sparse solutions, e.g., in Figure 8.10, 

the point of contact implies that 𝛽1 = 0. 

As a comparison, in Ridge regression, as the geometric area 

corresponding to the 𝐿2 norm has no such “sharp” corner points, the model 

has no strong incentive for where to allocate the point of contacts of the two 

geometric areas. Thus, given the infinite number of potential point of 

contacts of the two geometric areas, it is expected that Ridge regression will 

not result in sparse solutions with exact zeros in �̂�. 

 

 

Figure 8.10: Why LASSO could generate sparse estimates while Ridge 

tends to not 

 

Following this idea, the 𝐿1 norm is later extended to 𝐿𝑞 norm for 𝑞 ≤ 1. 

For any 𝑞 ≤ 1, we could generate those “sharp” corner points to enable 

sparse solutions of �̂�. The advantage of using 𝑞 < 1 is to reduce bias in the 

model. Recall that, we have mentioned earlier, that LASSO will lead to bias 

in parameter estimation. Using 𝑞 < 1 is a good approach to reduce this bias, 
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while it still produces “sharp” corner points but penalizes less on the 

significant predictors. The cost of using 𝑞 < 1 is that it will result in non-

concave penalty terms, making the overall objective function of the sparse 

model non-concave.  

 

 

Figure 8.11: Illustration of the principal components in a dataset with 2 

variables; the main variation source is represented by the 1st PC dimension  

 

III. Principal Component Analysis 

III.1 Rationale and Formulation 

The PCA method is built on the assumption that, for a multivariate 

dataset that has many variables, the dimensionality of the dataset is smaller 

than it appears to be. In other words, for example, for one dataset that has 

10 variables, we may have the impression that there are ten independent 

sources of variation that infuse uncertainty into the data. But, PCA is built 

on the idea that the underlying independent sources of variations are only a 

few (e.g., 2 or 3 for 10 variables could be usual). The question is how to 

identify the intrinsic sources of the variation.  

As shown in Figure 8.11, PCA pursues this idea of identifying the intrinsic 

sources of the variation in the framework of linear models. The characteristic 
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shape of the dataset shown in Figure 8.11 indicates that, although the data 

points are located in a two-dimensional space, the data points are not totally 

randomly scattered all over the place. Rather, there is a force that orients 

these data points towards one direction (or, in the same effect, you may say 

there is a force that pushes the data points towards one narrow zone). To 

recover these forces, the PCA seeks linear combinations of the original 

variables to pinpoint the directions towards which the underlying forces are 

pushing the data points. In other words, another assumption of PCA is that 

the relationship between the underlying dimensions and the variables (surface 

dimensions) is linear.  

III.2 Theory and Method 

The idea shown in Figure 8.11 reveals the principle to guide the estimation 

of the linear weights to combine the variables. This leads to the following 

formulation: 

𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{∑ 𝒙(𝑖) ∙ 𝒘(1)
𝑁
𝑛=1 }, 

where there are 𝑁 samples and 𝑝 variables, 𝒙(𝑛) ∈ 𝑅
1×𝑝 is the 𝑛th sample, 

and 𝒘(1) ∈ 𝑅
𝑝×1 is the linear weights vector of the first PC. Note that the 

constraint 𝒘(1)
𝑇 𝒘(1) = 1 is to control the scale of the vector – without which 

an infinite number of solutions would exist. This also indicates that the 

absolute magnitudes of the weights are meaningless. Only the relative 

magnitudes are useful.  

A more succinct form could be: 

𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{𝒘(1)
𝑇 𝐗𝑇𝐗𝒘(1)}, 

where 𝐗 ∈ 𝑅𝑁×𝑝 is usually called the data matrix that concatenate all the 𝑁 

samples into a matrix. 𝐗𝑇𝐗 is actually the sample covariance matrix.  
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Figure 8.12: Scree plot that shows the first 5 PCs maybe significant, 

while the first PC is definitely a major variation source, together with the 

second and third PCs as other main variations sources  

 

To identify the second PC, we could follow the principle of iteration. The 

idea is rather simple. As the first PC represents one variance source, and the 

original data 𝐗 contains a linear aggregation of multiple variance sources, why 

not remove the first variance source from 𝐗, then create a new data that 

contains the remaining variance sources? Then, the procedure for finding 

𝒘(1) could be readily used for finding 𝒘(2), since with 𝒘(1) removed, 𝒘(2) 

is the largest variance source now.  

This process could be generalized as: 

 In order to find the 𝑘th PC, we could create a dataset as 𝐗(𝑘) =

𝐗 − ∑ 𝐗𝑘−1
𝑠=1 𝒘(𝑠)𝒘(𝑠)

𝑇 . 
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 Then, we solve 𝒘(𝑘) = arg max
𝒘(𝑘)
𝑇 𝒘(𝑘)=1

{𝒘(𝑘)
𝑇 𝐗(𝑘)

𝑇 𝐗(𝑘)𝒘(𝑘)} for 

identifying 𝒘(𝑘). 

In practice, we need to decide how many PCs are needed to represent the 

dataset. In theory, for a dataset with 𝑝 variables, there are 𝑝 PCs that could 

be extracted if the dataset has more sample size than the number of variables. 

But it is often the case that only the first few PCs are needed since these few 

PCs could explain away majority of the variation in the data. The scree plot 

as shown in Figure 8.12 is a common tool in practice, that draws the 

eigenvalues of the PCs to look for the change point beyond which the PCs 

maybe statistically insignificant.  

We could use the following example to practice this procedure. The 

dataset is shown in the Table below: 

 

Table 8.2: A dataset example for PCA 

𝑋1 𝑋2 

-1 0 

3 3 

3 5 

-3 -2 

3 4 

5 6 

7 6 

2 2 

 

First, we can calculate the sample covariance matrix as 

𝐒 = 𝐗𝑇𝐗 = [
115 118
118 130

]. 

We can obtain the 𝒘(1) by 
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𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{𝒘(1)
𝑇 𝐒𝒘(1)}. 

The lagrangian form is 

𝒘(1)
𝑇 𝐒𝒘(1) − 𝜆1𝒘(1)

𝑇 𝒘(1). 

By taking the derivative of the lagrangian form with regards to 𝒘(1), it is 

not hard to arrive at the equation: 

𝐒𝒘(1) − 𝜆1𝒘(1) = 0. 

Thus, this is an eigenvalue problem of the matrix 𝐒. We can solve it as 

𝜆1 = 240.74 and 𝒘(1) = [0.68,0.73]. Further, we can get that 𝜆2 = 4.26 

and 𝒘(2) = [−0.73,0.68]. 

 

III.3 R Lab 

We apply PCA on the AD data that has been used in the R lab of LASSO. 

There are many packages in R that can conduct PCA. Here, we use the 

function PCA() in the “FactoMineR” package.  

# Implement principal component analysis on the AD data 
# install.packages('factoextra') 
require(factoextra) 
require(FactoMineR) 
require(ggfortify) 
tempData <- AD[, c(17:dim(AD)[2])] 
# Conduct the PCA analysis 
pca.AD <- PCA(tempData, graph = FALSE, ncp = 10) 

The construct pca.AD has the eigenvalues and the principal components. 

We can use fviz_screeplot() to visualize the contributions of the principal 

components, as shown in Figure 8.13. 

# Examine the contributions of the PCs in explaining the variatio
n in data 
fviz_screeplot(pca.AD, addlabels = TRUE, ylim = c(0, 50)) 
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It can be seen from Figure 8.13 that the first PC could explain away 16.7% 

of the total variation and the second PC could explain away 12.7% of the 

total variation. It seems that there is a change point at the third PC, showing 

that the following PCs could be insignificant. 

 

 

Figure 8.13: Scree plot of the PCA analysis on the AD dataset 

 

We could also show the numerical details of the loadings of the variables 

in the PCs.  

# Examine the loadings of the variables in the PCs 
var <- get_pca_var(pca.AD) 
head(var$contrib) 

##                Dim.1      Dim.2       Dim.3      Dim.4      Dim.5 
## ST101SV 5.217488e-01 0.00543192 0.022513018 0.00695649 0.55635835 
## ST102CV 6.331461e-01 0.26061413 0.167089523 0.02972375 0.11789451 
## ST102SA 1.029105e+00 0.00198550 0.011535559 0.22360153 0.17723377 
## ST102TA 1.080058e-02 1.06804755 0.237858049 0.38424318 0.00483804 
## ST102TS 5.979293e-05 0.06038710 0.299593782 0.52436240 0.02805072 
## ST103CV 8.089453e-02 0.05503171 0.001267605 0.54330434 3.08447026 
##               Dim.6       Dim.7       Dim.8       Dim.9       Dim.10 
## ST101SV 1.835299776 0.498169844 0.055960987 0.018902630 0.0517726064 
## ST102CV 0.037225860 0.182728808 0.039477823 0.029123146 0.1602108140 
## ST102SA 0.336057060 0.006782785 0.008738713 0.009108956 0.0002884433 
## ST102TA 0.167160010 0.221663964 0.273441045 0.003510227 0.2088207321 
## ST102TS 0.008515869 0.167631015 0.074972768 0.022843632 1.9489628313 
## ST103CV 0.175682030 0.822144415 1.592278638 0.251205409 0.1727957251 
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It is also helpful to visualize the contributions of the variables to the PCs 

by figures. For example, Figures 8.14 and 8.15 show the contributions of the 

variables to the first and second PC, respectively. 

fviz_contrib(pca.AD, choice = "var", axes = 1, top = 20) 
fviz_contrib(pca.AD, choice = "var", axes = 2, top = 20) 

 

Figure 8.14: Contributions of the variables for the first PC 

 

Figure 8.15: Contributions of the variables for the second PC 

 

Figure 8.16 is another way to visualize the contributions of the variables 

to the PCs. 
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fviz_pca_var(pca.AD, col.var = "contrib", select.var = list(contr
ib = 20), gradient.cols = c("#00AFBB",  
    "#E7B800", "#FC4E07"), repel = TRUE  # Avoid text overlapping 
) 

 

 

Figure 8.16: Loadings of the top variables in the first and second PCs 

 

 

Figure 8.17: Scatterplot of the subjects in the space defined by the first and 

second PCs 
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With the identified PCs, we can visualize the distribution of the data 

points in this new space spanned by the PCs. Sometimes, it may reveal some 

inherent structure of the dataset. For example, for a classification problem, it 

is hoped that the data points from different classes would cluster around 

different centers in the space spanned by the PCs. In our case, as shown in 

Figure 8.17, this cluster structure is not perfect but seems to be on the 

borderline of significance, as it is not entirely like a pure random pattern.  

# Examine the projection of data points in the new space defined 
by PCs 
autoplot(prcomp(tempData), data = AD, colour = "DX_bl", label = T
RUE, label.size = 3) 

The PCs can be taken as new variables. For example, we can build 

regression models using the PCs to predict outcome variables. Here, we use 

AGE as the outcome, and first fit a regression model with 10 PCs. 

# fit a regression model using the PCs 
tempData <- data.frame(cbind(AD[, 5], pca.AD$ind$coord)) 
names(tempData) <- c("AGE", "PC1", "PC2", "PC3", "PC4", "PC5", "P
C6", "PC7",  
    "PC8", "PC9", "PC10") 
lm.AD <- lm(AGE ~ ., data = tempData) 
summary(lm.AD) 

It seems that the first PC is not significant, while the second, the third, 

and the fifth PCs are significant. It is not unusual to see that the first PC is 

insignificant, as the first PC sometimes may embody a variation source that 

is not correlated with the outcome variable. It is always a challenge to 

interpret the results of PCA, particularly, to interpret the physical 

correspondence of the PCs. On the other hand, we can see that the R-

squared by this model is 0.3672, and the p-value is as small as 0.0008235, 

indicating the overall model is significant. Further variable selection would 

be conducted to prune the model and reduce its complexity.  

##  
## Call: 
## lm(formula = AGE ~ ., data = tempData) 
##  
## Residuals: 
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##      Min       1Q   Median       3Q      Max  
## -17.3377  -2.5627   0.0518   2.6820  11.1772  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept) 73.68767    0.59939 122.938  < 2e-16 *** 
## PC1          0.04011    0.08275   0.485 0.629580     
## PC2         -0.31556    0.09490  -3.325 0.001488 **  
## PC3          0.50022    0.13510   3.702 0.000456 *** 
## PC4          0.14812    0.17462   0.848 0.399578     
## PC5          0.47954    0.19404   2.471 0.016219 *   
## PC6         -0.29760    0.20134  -1.478 0.144444     
## PC7          0.10160    0.21388   0.475 0.636440     
## PC8         -0.25015    0.22527  -1.110 0.271100     
## PC9         -0.02837    0.22932  -0.124 0.901949     
## PC10         0.16326    0.23282   0.701 0.485794     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 5.121 on 62 degrees of freedom 
## Multiple R-squared:  0.3672, Adjusted R-squared:  0.2651  
## F-statistic: 3.598 on 10 and 62 DF,  p-value: 0.0008235 

 

III.4 Remark 

While PCA has been widely used, it is often criticized as a black box model 

or lack interpretability since it is always not easy to connect the identified 

principal components with physical entities. But, probably, we may stop 

worry about validity of the PCA method in many applications and focus on 

the significance it can reveal. After all, when studying real-world systems that 

we haven’t known what we don’t know yet, we have to make bold hypothesis 

and make the leap over the gaps. This is probably one of the reasons why 

PCA has been applied in many real world applications. The massive practices 

of PCA in many areas have formed a convention, or a myth – some critical 

statisticians may say – that formulistic rubrics have been invented to help 

beginners to quickly jump in to the vehicle of PCA and start to convert their 

very challenging data into PCA patterns, then further convert these patterns 

into formulated sentences such as “the variables that have larger magnitudes 

in the first 3 PCs correspond to the brain regions in hippocampus areas, 
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indicating that these brain regions manifest significant functional 

connectivity to deliver the verbal function”, or “we have identified 5 

significant PCs, and the genes that show dominant magnitudes in the linear 

weights vector are all related to T-cell production and immune functions – 

thereby each of the PC indicates a biological pathway that consists of these 

constitutional genes working together to produce specific types of proteins”. 

You may also hear from some financial analysts who presented such a result: 

“through PCA on 100 stocks, we found that the first PC consists of 10 stocks 

as their weights are significantly larger than the other stocks. This may 

indicate that there is strong correlation between these 10 stocks and you may 

consider this fact when you define your investment strategy”.  

 

IV. Variable Selection by Random Forests 

III.1 Rationale and Formulation 

As we have seen that, both LASSO and PCA are linear models, which are 

not suitable if there are nonlinear relationships in the dataset. For nonlinear 

variable selection, the random forests have been commonly used. Recall that 

the random forests consist of decision nodes that are defined by splits on 

some variables. This can provide information about the variables’ importance 

in the random forests. Also, random forests are powerful in capturing 

nonlinear and predictive information from data, and therefore, provide data-

driven characterization of variable importance. Third, random forests require 

little data preprocessing. They can handle different scales of the continuous 

variables since the impurity gain is calculated based on the outcome variable, 

and can work with both categorical and numerical variables. Given these 

advantages, methods have been developed to conduct variable selection 

using random forest models.  

 

III.2 Theory and Method 

Variable importance scores: The importance score of a variable can be 

measured based on the Impurity gain. For classification problems, the Gini 

index for the data points at a node is defined as 
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𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑐(1 − 𝑝𝑐)
𝐶
𝑐=1 , 

where 𝐶 is the number the classes in the data set, and 𝑝𝑐 is the proportion of 

the data instances of class 𝑐.  

Assuming that a variable is used for splitting the node into 𝑛 children 

nodes. The Gini gain of the variable can be calculated as  

∇ 𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 − ∑ 𝑤𝑖 ∗ 𝐺𝑖𝑛𝑖𝑖
𝑛
𝑖=1 , 

where 𝐺𝑖𝑛𝑖 is the Gini index at the node to be split;  𝑤𝑖 and 𝐺𝑖𝑛𝑖𝑖 are the 

percentage of data instances of the entire dataset and the Gini index at the 

𝑖𝑡ℎ node, respectively. 

Then, the importance score of a variable can be calculated as  
1

𝑛𝑡𝑟𝑒𝑒
∑ ∇ 𝐺𝑖𝑛𝑖𝑖
𝑗𝑚
𝑖=𝑗1

, 

where 𝑗1 , …, 𝑗𝑚  are the nodes where the variable 𝑗  is used for splitting, 

∇ 𝐺𝑖𝑛𝑖𝑖 is the Gini gain at node 𝑖, and 𝑛𝑡𝑟𝑒𝑒 is the number of trees in the 

random forest model.  

In what follows, we show how this can be done using a small data example. 

Consider the following data example shown in Table 8.3. Note that 𝑋1 

and 𝑋2 are identical, and thus one of them is redundant.  

 

Table 8.3: A dataset example for RF 

 

ID 𝑋1 𝑋2 𝑋3 𝑋4 Class 

1 1 1 0 1 C0 

2 0 0 0 1 C1 

3 1 1 1 1 C1 

4 0 0 1 1 C1 

 

Assume that a random forest model is built on the data set with two trees, 

show in Figure 8.18 and Figure 8.19, respectively. The Gini index at each 

node is also shown in the Figures. 
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Figure 8.18: Tree 1 in a random forest model 

 

Figure 8.19: Tree 2 in a random forest model 

 

Now, we calculate the importance score for each variable.  

At split 1, the Gini gain for 𝑋1 is calculated as 

0.375 – 0.5*0 – 0.5*0.5 = 0.125. 

At split 2, the Gini gain for 𝑋3 is 0.5.  

At split 3, the Gini gain for 𝑋2 is 0.5 – 0.25*0 + 0.75*0.44 = 0.17. 

At split 4, the Gini gain for  𝑋3 is 0.44. 
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Therefore, the importance score of 𝑋1 , 𝑋2 , 𝑋3  and 𝑋4 , are 0.125/2 = 

0.0625, 0.17/2=0.085, (0.5+0.44)/2=0.47, and 0 (there is not split using 𝑋4), 

respectively. 

Note that the example above is about classification problems. For 

regression problems, the mean squared error can be used as the impurity 

measure: 

𝑀𝑆𝐸 = ∑ (𝑦𝑖 − �̅�)
2

𝑖 , 

where 𝑦𝑖 is the value of the outcome variable of the 𝑖𝑡ℎ data instance at a 

node, and �̿� is the average of the outcome variable of all the data instance at 

the node. 

 

Regularized random forests: We can see that, in this calculation, the 

Gini gains are added equally across all the nodes, and a split that perfectly 

separates 2 data points has the same Gini gain as a split that perfectly 

separates 100 data points. Thus, the variable importance score built on this 

Gini gain can be sensitive to noise. In addition, since the importance score 

of a variable depends on only the splits where the variable is used, the 

existence of correlation or redundancy between the variables can make this 

concept of importance score misleading. In the illustrative example 

abovementioned, since 𝑋1  and 𝑋2  are identical, their importance scores 

should be the same. However, this is not the case, as in building the trees, the 

random forest model randomly selects either of them to split the nodes. This 

results in a dilution effect in the estimation of their importance scores. Thus, 

the true importance score of either  𝑋1  or 𝑋2  should be the sum of the 

obtained importance scores from an established random forest model.  

 This is just a case of two redundant variables. As the number of highly 

correlated variables increases, the importance scores for each are expected to 

further decrease.  

Thus, the importance scores of the variables provided by the random 

forests do not consider variables redundancy. In the illustrative example, 

both 𝑋1 and 𝑋2 are used for splitting nodes and generating impurity gain, but 

only one of them is needed for the prediction task as they are essentially the 
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same. To overcome this limitation, we introduce the Regularized random 

forests (RRF)1 that can generate a relevant and non-redundant variable subset.  

 

 

Figure 8.20: Tree 1 in a random forest model 

 

Figure 8.21: Tree 2 in a random forest model 

 

The RRFs are built sequentially. A key difference between RRF and 

ordinary random forests is that the RRF uses the regularized impurity gain 

for evaluating the splitting criteria. The regularized impurity gain of variable 

𝑋𝑖 at a node is calculated as  

𝐺𝑎𝑖𝑛′(𝑋𝑖) = {
𝜆 ⋅ 𝐺𝑎𝑖𝑛(𝑋𝑖)   𝑋𝑖 ∉ 𝐹  
𝐺𝑎𝑖𝑛(𝑋𝑖)       𝑋𝑖 ∈ 𝐹

 }, 

                                                      
1 Deng, H. and Runger, G. Gene selection with guided regularized random forest. Pattern 

recognition, 2013. 
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where 𝐺𝑎𝑖𝑛(𝑋𝑖)  is an ordinary impurity gain, e.g., Gini index gain and 

reduction of mean square error; 𝐹 is a feature subset including features used 

to split the previous nodes and is an empty set at the first node of the first 

tree; 𝜆 ∈ (0,1] is referred as the coefficient and is used to penalize the gain 

if 𝑋𝑖 is used in previous split.  

In RRF, if a variable 𝑋𝑖 that is not present in 𝐹  produces more 

information gain than the variables in 𝐹, it will be used for splitting the node 

and further added into 𝐹. Also, not like in random forests where the number 

of features 𝑀  is randomly selected and tested at each node, in RRF, all 

features from 𝐹 and a subset of features randomly selected from �̅� (features 

that do not belong to 𝐹) are tested. The size of the subset can be set to the 

minimum of 𝑀 and size of �̅�.  

We illustrate how the RRF can be built with the data example shown in 

Table 8.3. Here, we set  𝜆 = 0.8, and 𝑀 = 1.  

First, look at the tree shown in Figure 8.20. At split 1, 𝐹 is an empty set. 

Assuming that, still, 𝑋1 is used for testing the split. The regularized Gini gain 

for 𝑋1 = 0 is calculated as 

0.8 * (0.375 – 0.5*0 – 0.5*0.5) = 0.8 * 0.125 = 0.1. 

After split 1, 𝐹 = {𝑋1}.  

At split 2, suppose 𝑋3 is selected for testing the split as it is not in 𝐹 yet. 

The regularized Gini gain for 𝑋3 = 0 is 0.8 * 0.5 = 0.4. As all the other 

variables in 𝐹 should be tested, we can also get that the regularized Gini gain 

for 𝑋1 is 0. Therefore, 𝑋3 is still the best variable for splitting the node. 

After split 3, 𝐹 = {𝑋1, 𝑋3}.  

It can be seen that the first tree grown by RRF is the same as the one 

from the earlier section. Now consider the second example as shown in 

Figure 8.21.  

At split 3, suppose 𝑋2 is still used for testing the node. As 𝑋2 is not in 𝐹 

yet, the regularized Gini gain of 𝑋2 = 0 is 0.8 * (0.5 – 0.25*0 + 0.75*0.44) = 

0.8 * 0.17 = 0.136. The regularized Gini gain for 𝑋1 = 0 is 0.5 – 0.25*0 + 
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0.75*0.44 = 0.17 as 𝑋1 is in 𝐹 and is not penalized. The regularized Gini gain 

for 𝑋3 = 0 is 0.5.  

Therefore, 𝑋3 is used for splitting the node. Both children nodes have 

only one class and so are made as leaf nodes.   

It can be seen from the second tree building process, the redundant 

feature, 𝑋2, is penalized and has less gain than its identical variable 𝑋1. Also, 

𝑋3 is now used for splitting the node as it has the strongest impurity gain. 

Thus, the variable subset selected from the two trees are 𝐹 = {𝑋1, 𝑋3}.  

While the RRF is a remedy to overcome redundancy of variables, the 

guided regularized random forests (GRRF) can further enhance RRF when 

the sample size is small. This is because that, since a tree recursively splits the 

training data points, the number of data points can be small when the tree 

reaching a certain depth. The evaluation criterion may not be accurate when 

the number of data points is small and could add noise to variable selection. 

The GRRF can be used to reduce the chance an irrelevant or redundant 

variable being selected when the number of instances is small.  

In GRRF, instead having one 𝜆 for all variables, each variable 𝑋𝑖 can have 

its own 𝜆𝑖: 

𝐺𝑎𝑖𝑛′(𝑋𝑖) = {
𝜆𝑖 ⋅ 𝐺𝑎𝑖𝑛(𝑋𝑖)   𝑋𝑖 ∉ 𝐹  
𝐺𝑎𝑖𝑛(𝑋𝑖)       𝑋𝑖 ∈ 𝐹

 }, 

where 𝜆𝑖 is 

𝜆𝑖 = (1 − 𝛾)𝜆0 + 𝛾 ∗ 𝑤𝑖, 

where 𝜆0  controls the base regularization, 𝑤𝑖 ∈ [0,1]  is a prior of 

importance of each variable 𝜐𝑖, and 𝛾 ∈ [0,1] controls the weight from the 

prior. Note RRF is a special case of GRRF when 𝛾 = 0 . 𝑤𝑖  can be 

determined by prior knowledge about the variables, or can be generated from 

the normalized importance scores (between 0 and 1) from random forests. 

The importance scores aggregate the impurities gains from all trees, and 

therefore, are expected to be less noisy than the impurity gain calculated only 

from a single node.  
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Suppose at the first split of the first tree shown in Figure 8.18, two 

variables 𝑋1 and 𝑋2 are selected for testing, where 𝑤1 = 0.6, 𝑤2 = 1, 𝜆0 =

0.9, and 𝛾 = 0.5. Then, the impurity gain in GRRF for 𝑋1 is calculated as 

(0.5*0.9 + 0.5*0.6)*0.125. 

And the impurity gain for 𝑋2 is 

(0.5*0.9 + 0.5*1)*0.125. 

Therefore, even the original impurity gain for the two variables is the 

same, with a prior weight, 𝑋2 is preferred to split the node.  

 

III.3 R Lab 

We use the extended AD dataset. Further, we add redundant variables, 

i.e., the number of variables in this manipulated dataset are 4 times of the 

number of original variables. We then use all the features to predict the age 

as a classification problem, i.e., we discretize the variable “AGE” to create a 

binary variable by its mean value. 

First, we apply random forests to this data set. The importance scores of 

the variables are plotted in Figure 8.22. The variable names are omitted due 

to limited space.  

require(inTrees) 
require(randomForest) 
require(RRF) 
set.seed(1) 
theme_set(theme_gray(base_size = 18)) 
 
path <- "../../data/AD_hd.csv" 
data <- read.csv(path, header = TRUE) 
data$AGE <- as.factor(dicretizeVector(data$AGE, K = 2)) 
target <- data$AGE 
rm_indx <- which(colnames(data) %in% c("AGE", "ID", "TOTAL13", "M
MSCORE")) 
X <- data[, -rm_indx] 
X1 <- cbind(X, X, X) 
colnames(X1) <- paste0("Y", 1:ncol(X1)) 
for (i in 1:ncol(X1)) { 
    perc <- 0.1 
    index <- sample(nrow(X1), floor(nrow(X1) * perc)) 
    X1[, i][sort(index)] <- (X1[, i])[index] 
} 
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X <- cbind(X, X1) 
rf <- randomForest(X, target) 
imp <- as.data.frame(rf$importance) 
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
" 
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE] 
imp$variable <- rownames(imp) 
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable)) 
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",  
    aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank()) 

 

Figure 8.22: The important score of the variables by RF 

 

From Figure 8.22 we can see a ranking of all variables in terms of their 

predictive powers. The top variables are ST62TA ST59TS, ST56TA, ST58CV, and 

ST26TS. However, as we have demonstrated on the exemplary dataset shown 

in Table 8.3, the important scores of the variables are actually diluted by the 

redundancy of the variables. Thus, the observation that a large number of 

variables have non-zero importance scores in Figure 8.22 just amplifies the 

suspicion that there may be many redundant variables. 

Now, let’s apply the RRF to the data. The importance scores from the 

RRF are plotted in Figure 8.23.  



 

256 
 

rrf <- RRF(X, target) 
imp <- as.data.frame(rrf$importance) 
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
" 
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE] 
imp$variable <- rownames(imp) 
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable)) 
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",  
    aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank()) 

 

Figure 8.23: The important score of the variables by RRF 

Clearly, as shown in Figure 8.23, a much smaller number of variables have 

non-zero importance scores, compared to ordinary random forests. This 

demonstrates the superior capacity of RRF to deal with redundant variables 

than regular RF models. 

Now, let’s apply the GRRF to this dataset. The importance scores from 

the GRRF are shown in Figure 8.24. Similarly, the number of variables with 

non-zero importance scores is much smaller than ordinary random forests. 

rf <- randomForest(X, target) 
impRF <- rf$importance 
impRF <- impRF[, "MeanDecreaseGini"] 
imp <- impRF/(max(impRF))  #normalize the importance scores into 
[0,1] 
gamma <- 0.1 
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coefReg <- (1 - gamma) * 1 + gamma * imp  # each variable has a c
oefficient, which depends on the importance score from the ordina
ry RF and the parameter: gamma 
grrf <- RRF(X, target, flagReg = 1, coefReg = coefReg) 
 
imp <- as.data.frame(grrf$importance) 
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
" 
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE] 
imp$variable <- rownames(imp) 
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable)) 
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",  
    aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank()) 

 

Figure 8.24: The important score of the variables by RRF 

 

The previous figures illustrate that both RRF and GRRF use a much 

smaller number of variables to predict, compared to ordinary random forests. 

Now we evaluate the quality of the variable subset by the classification error.  

Here is the procedure of evaluating the variable selection method. The 

dataset is split into training and testing sets with a 2:1 ratio. Different variable 

selection methods (e.g., by RF, RRF, and GRRF) are applied to the training 

set, and then, variable subsets are selected. Then, ordinary random forests are 

trained on the reduced training set, and applied to the testing set such that 
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we can obtain the classification error. Each of the following experiments is 

run 50 times to get a robust estimate of the error rate. Note that, here, we 

first create the indices for the testing set (50 replicates), so that the later 

experiments can all consistently use the same indices.  

The first variable selection method is to select the top 𝐾 variables that 

have the top 𝐾  importance scores from random forests. We study this 

method by changing 𝐾 from 1 to 200. Results are shown in Figure 8.25. 

 

set.seed(1) 
testing.indices <- NULL 
for (i in 1:50) { 
    testing.indices <- rbind(testing.indices, sample(nrow(data), 
floor(1 * nrow(data)/3))) 
} 
 
err.mat.rf <- NULL 
for (K in c(1, (1:10) * 10, 150, 200)) { 
    pred <- NULL 
    for (i in 1:nrow(testing.indices)) { 
         
        testing.ix <- testing.indices[i, ] 
        X.training <- X[-testing.ix, ] 
        target.training <- target[-testing.ix] 
        X.testing <- X[testing.ix, , drop = FALSE] 
        target.testing <- target[testing.ix] 
         
        rf <- randomForest(X.training, target.training) 
        impRF <- rf$importance 
        impRF <- impRF[, "MeanDecreaseGini"] 
        ix <- order(impRF, decreasing = TRUE) 
         
        X.training.new <- X.training[, ix[1:K], drop = FALSE] 
        rf <- randomForest(X.training.new, target.training) 
         
        target.pred <- predict(rf, X.testing) 
         
        error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing) 
        err.mat.rf <- rbind(err.mat.rf, c(K, error)) 
    } 
} 
err.mat.rf <- as.data.frame(err.mat.rf) 
colnames(err.mat.rf) <- c("num_features", "error") 
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ggplot() + geom_boxplot(data = err.mat.rf %>% mutate(num_features
 = as.factor(num_features)),  
    aes(y = error, x = num_features)) + geom_point(size = 3) 

 

Figure 8.25: The error rates of the RF models with different number of 

features 

 

From Figure 8.25, it can be seen that the error rates decrease as the 

number of variables increases. This makes sense as additional information is 

provided to the model to predict the outcome variable as more variables are 

added.  

Next, we use RRF to conduct variable selection. This can be done by 

changing the coefficient parameter (coefReg) in RRF. The number of 

selected variables should increase as the coefficient increases, and the error 

rates should decrease accordingly. Results are shown in Figure 8.26 and 

Figure 8.27.  

set.seed(1) 
err.mat.rrf <- NULL 
for (coefI in c(0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1)) { 
    pred <- NULL 
    for (i in 1:nrow(testing.indices)) { 
        testing.ix <- testing.indices[i, ] 
        X.training <- X[-testing.ix, ] 
        target.training <- target[-testing.ix] 
        X.testing <- X[testing.ix, , drop = FALSE] 
        target.testing <- target[testing.ix] 
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        rrf <- RRF(X.training, target.training, coefReg = coefI) 
         
        X.training.new <- X.training[, rrf$feaSet, drop = FALSE] 
        rf <- randomForest(X.training.new, target.training) 
         
        target.pred <- predict(rf, X.testing) 
        # pred <- c(pred, as.character(target.pred) ) 
        error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing) 
        err.mat.rrf <- rbind(err.mat.rrf, c(coefI, length(rrf$fea
Set), error)) 
    } 
    # error <- length(which(pred != target))/length(pred) err.ma
t.rrf <- 
    # rbind(err.mat.rrf, c(coefI, mean(num.fea.v), error)) 
} 
err.mat.rrf <- as.data.frame(err.mat.rrf) 
colnames(err.mat.rrf) <- c("coef", "num_features", "error") 
# err.mat.rrf <- err.mat.rrf %>% mutate(coef=as.factor(coef)) 
ggplot() + geom_boxplot(data = err.mat.rrf %>% mutate(coef = as.f
actor(coef)),  
    aes(y = error, x = coef)) + geom_point(size = 3) 

It is known that the maximum number of features are selected when the 

coefficient becomes 1. As shown in Figure 8.26, when the coefficient is 

around 0.95, the smallest error rates could be obtained. Also, from Figure 

8.27, we can see that, indeed the number of selected variables increases when 

the coefficient increases. Thus, RRF provides a continuum of variable 

selection controlled by the parameter coefReg, providing convenience in 

model tuning and cross-validation.  

ggplot() + geom_boxplot(data = err.mat.rrf %>% mutate(coef = as.f
actor(coef)),  
    aes(y = num_features, x = coef)) + geom_point(size = 3) 
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Figure 8.26: The error rates of the RF models with different values of coef 

 

Figure 8.27: Number of features versus different values of coef 

 

Furthermore, we conduct the variable selection using GRRF. We use 

different 𝛾 in GRRF and check the number of features and error rates. The 

weights come from the importance scores from random forests. As shown 

in Figure 8.28 and Figure 8.29, we can observe that the number of features 

decreases as 𝛾 increases, and the error rates increase accordingly.  

 

set.seed(1) 
err.mat.grrf <- NULL 
for (gammaI in c(0.4, 0.3, 0.2, 0.1, 0.05, 0)) { 
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    pred <- NULL 
    num.fea.v <- NULL 
     
    for (i in 1:nrow(testing.indices)) { 
        testing.ix <- testing.indices[i, ] 
        X.training <- X[-testing.ix, ] 
        target.training <- target[-testing.ix] 
        X.testing <- X[testing.ix, , drop = FALSE] 
        target.testing <- target[testing.ix] 
         
        rf <- randomForest(X.training, target.training) 
        impRF <- rf$importance 
        impRF <- impRF[, "MeanDecreaseGini"] 
        imp <- impRF/(max(impRF)) 
        coefReg <- (1 - gammaI) * 1 + gammaI * imp 
         
        grrf <- RRF(X.training, target.training, flagReg = 1, coe
fReg = coefReg) 
         
        # num.fea.v <- c(num.fea.v, length(grrf$feaSet)) 
        X.training.new <- X.training[, grrf$feaSet, drop = FALSE] 
         
        rf <- randomForest(X.training.new, target.training) 
         
        target.pred <- predict(rf, X.testing) 
        # pred <- c(pred, as.character(target.pred) ) 
        error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing) 
        err.mat.grrf <- rbind(err.mat.grrf, c(gammaI, length(grrf
$feaSet), error)) 
    } 
} 
 
err.mat.grrf <- as.data.frame(err.mat.grrf) 
colnames(err.mat.grrf) <- c("gamma", "num_features", "error") 
# err.mat.grrf <- err.mat.grrf %>% mutate(gamma=as.factor(gamma)) 
ggplot() + geom_boxplot(data = err.mat.grrf %>% mutate(gamma = a
s.factor(gamma)),  
    aes(y = error, x = gamma)) + geom_point(size = 3) 
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Figure 8.28: The error rates of the RF models with different values of 

gamma in RRF 

 

ggplot() + geom_boxplot(data = err.mat.grrf %>% mutate(gamma = a
s.factor(gamma)),  
    aes(y = num_features, x = gamma)) + geom_point(size = 3) 

 

 

Figure 8.29: Number of features versus different values of gamma 

Now, we compile the results from all the methods, and plot the average 

error rates at each number of features in Figure 8.30. For RRF and GRRF, 

the average number of features and average error rates of each parameter 
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setting are used. It can be seen that between 40 and 80 features, the RRF and 

GRRF methods have lower error rates than the RF model that uses the top 

𝐾 features according to the importance scores generated by the RF model. 

As 𝐾 increases, the error rate of using the top 𝐾 variables according to the 

RF importance scores continues to decrease, lower than using the variables 

selected from RRF or GRRF. This means that RRF and GRRF can miss 

some informative variables. However, since this dataset is small, and the use 

of cross-validation makes it even smaller, the difference may not be as 

significant. To verify this hypothesis, we also plot the average errors with +/- 

1 standard deviation in Figure 8.31. It can be seen that all the methods have 

similar error rate ranges when a certain number of variables is selected. 

However, an advantage for RRF and GRRF is that they can efficiently 

determine the number of variables needed by changing the coefficient or 𝛾.  

err.mat.rf <- as.data.frame(err.mat.rf) 
err.mat.rf$method <- "RF" 
err.mat.rrf <- as.data.frame(err.mat.rrf) 
err.mat.rrf$method <- "RRF" 
err.mat.grrf <- as.data.frame(err.mat.grrf) 
err.mat.grrf$method <- "GRRF" 
err.mat.rrf.summary <- err.mat.rrf %>% group_by(coef, method) %>%
 summarize(num_features = mean(num_features),  
    sd = sd(error), error = mean(error), upper = error + sd, lowe
r = error -  
        sd) %>% ungroup() 
err.mat.grrf.summary <- err.mat.grrf %>% group_by(gamma, method)
 %>% summarize(num_features = mean(num_features),  
    sd = sd(error), error = mean(error), upper = error + sd, lowe
r = error -  
        sd) %>% ungroup() 
err.mat.rf.summary <- err.mat.rf %>% group_by(num_features, metho
d) %>% summarize(sd = sd(error),  
    error = mean(error), upper = error + sd, lower = error - sd)
 %>% ungroup() 
err.mat <- rbind(err.mat.rf.summary[, c("num_features", "error", 
"method", "lower",  
    "upper")], err.mat.rrf.summary[, c("num_features", "error", "
method", "lower",  
    "upper")], err.mat.grrf.summary[, c("num_features", "error", 
"method", "lower",  
    "upper")]) 
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ggplot(err.mat, aes(x = num_features, y = error, group = method, 
colour = method)) +  
    geom_line(linetype = "dashed") + geom_point() 

 

Figure 8.30: The error rates of the RF models with different number of 

features by RF, RRF, and GRRF 

 

Figure 8.31: The error rates (and their upper and lower bounds) of the RF 

models with different number of features by RF, RRF, and GRRF 

 

ggplot(err.mat, aes(x = num_features, y = error, group = method, 
colour = method)) +  
    geom_line(linetype = "dashed") + geom_point() + geom_ribbon(d
ata = err.mat,  
    aes(ymin = lower, ymax = upper), alpha = 0.05) 
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In addition, a more extensive study on more datasets has found that the 

RF model with the variables selected from RRF or GRRF can significantly 

outperform the RF model that uses all the features. This provides evidence 

that the RRF and GRRF indeed can provide better variable selection results 

in this data, which is consistent with theoretical arguments illustrated using 

the exemplary dataset shown in Table 8.3, and the simulation results we have 

shown in Figures 8.22 – 8.24.  

 

IV. Exercises 

Data analysis 

1. Find 5 classification datasets from the UCI data repository or R 

datasets. Use LASSO to select variables. Then, based on the reduced 

dataset, conduct a detailed analysis using the logistic regression 

model, SVM, decision tree, random forest, and AdaBoost. Conduct 

model selection and validation. Use cross-validation to select the 

best models.  

2. Repeat 1, but use random forest to select variables. Compare the 

final models with the ones based on LASSO.  

3. Repeat 1, but use PCA to identify the top PCs to replace the original 

variables. Compare the final models with the ones based on LASSO. 

4. Find 5 regression datasets from the UCI data repository or R 

datasets. Repeat 1 and 3. 

 

Programming  

5. Write your own R script to implement the shooting model. Compare 

your results with glm(). 

6. Write your own R script to implement the PCA model. Compare 

your results with pca(). 

 

 



 

 

 

 

 

 

CHAPTER 9: CRAFTSMANSHIP                
MODEL EXTENSION/STACKING   

 

 

 

 

 

I. Overview 

Chapter 9 is about “craftsmanship”. It recognizes the complexity of real-

world problems, and highlight how we can modify or combine existing 

methods in integrative ways to solve a problem. Three examples are given, 

including the Kernel regression model that generalized the idea of linear 

regression, the conditional variance regression model that interestingly layers 

one regression model into another, and the tree-based quality monitoring 

method that converts traditional quality monitoring into classification 

framework.  

 

II. Kernel Regression Model 

II.1 Rationale and Formulation 

Linear regression model looks intuitive, but it is built on very strong 

assumptions. One strong assumption is that, the linear regression model 

treats any data point in a global fashion. In other words, while a data point is 
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located in a particular geographical area, it has impact on the model’s 

prediction on any other location in the space. This could be irrational, as in 

some applications the data point collected in a local area may only tell 

information about that area, not easily generalizable to the whole space. This 

risk is shown in Figure 9.1.    

 

 

Figure 9.1: Risk of linear regression model as a global model. (left) A 

single outlier could impact the regression model as a whole; (Right) Many 

data problems call for localized regression models    

 

The R code for conducting the experiment shown in the left figure in 

Figure 9.1 is shown in below. 

# Write a nice simulator to generate dataset with one predictor a
nd one outcome 
# from a polynomial regression model 
require(splines) 

seed <- rnorm(1) 
set.seed(seed) 
gen_data <- function(n, coef, v_noise) { 
  eps <- rnorm(n, 0, v_noise) 
  x <- sort(runif(n, 0, 100)) 
  X <- cbind(1,ns(x, df = (length(coef) - 1))) 
  y <- as.numeric(X %*% coef + eps) 
  return(data.frame(x = x, y = y)) 
} 
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n_train <- 30 
coef <- c(1,0.5) 
v_noise <- 3 
tempData <- gen_data(n_train, coef, v_noise) 
tempData[31,] = c(200,200) 
# Fit the data using linear regression model 
x <- tempData[, "x"] 
y <- tempData[, "y"] 
fit <- lm(y~x,data=tempData) 
# Plot the data 
x <- tempData$x 
X <- cbind(1, x) 
y <- tempData$y 
plot(y ~ x, col = "gray", lwd = 2) 
lines(x, X %*% coef, lwd = 3, col = "black") 
lines(x, fitted(fit), lwd = 3, col = "darkorange") 
legend(x = "topleft", legend = c("True function", "Fitted linear 
model"), lwd = rep(4, 4), col = c("black", "darkorange"), text.wi
dth = 100, cex = 1.5) 

So how to fix this problem, while on the other hand we don’t want to 

derivate from the linear regression framework too far?  

One approach we could utilize is to look at the linear regression model in 

a new perspective. Statisticians and data scientists who innovate on modeling 

use this approach of look-for-a-new-perspective all the time1.  

Let’s look at the simple linear regression problem 𝑦 = 𝛽0 + 𝛽1𝑥. Let’s 

further simplify it by assuming that we know the mean of 𝑦 is zero, so is the 

mean of 𝑥. This will lead to the model as 𝑦 = 𝛽1𝑥 and the estimator of 𝛽1 

as 

𝛽1 =
(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )

∑ 𝑥𝑖
2𝑛

𝑖=1

. 

Thus, when we try to make prediction on a new data point with a given 

𝑥∗, the prediction 𝑦∗ will be 

𝑦∗ = 𝑥∗
(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 )

∑ 𝑥𝑖
2𝑛

𝑖=1

. 

                                                      
1 Some examples for interested readers: Neal, R. Bayesian learning for neural networks, 

Springer Verlag 1996. Lee, K. and Kim, J. On the equivalence of linear discriminant analysis 
and least squares, AAAI 2005. Ye, J. Least squares linear discriminant analysis, ICML 2007. 
Li, F., Yang, Y. and Xing, E. From LASSO regression to feature vector machine, NIPS 2005.  
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This could be further reformed as: 

𝑦∗ = ∑ 𝑦𝑖
𝑥𝑖

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑥∗𝑛
𝑖=1 , 

which is equivalent with   

𝑦∗ = ∑ 𝑦𝑖
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2

𝑛
𝑖=1 . 

Now if we look closely at this formula, we can draw interesting 

observations how linear regression model works in prediction on a new 

location using its knowledge on other locations (e.g., the historical data points 

(𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,2,… , 𝑛). It first evaluates the similarity between the new 

location with each of the knowing locations, as reflected in 
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2 , where 𝑥𝑖𝑥

∗ 

calculates the similarity and 𝑛𝑆𝑥
2  is a normalization factor. Then, the 

prediction 𝑦∗ is a weighted sum of 𝑦𝑖 for 𝑖 = 1,2,… , 𝑛 while the weight of 

𝑦𝑖 is proportional to the similarity between 𝑥𝑖 and 𝑥∗. From this perspective, 

we see linear regression model as a very empirical prediction model that bears 

the same idea with those lazy learning methods such as k-nearest-neighbor 

regression model or local regression models. The difference here, in the linear 

regression model, is that a special similarity measure (i.e., 
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2 ) is used, that 

means the weight of a data point depends on how far it is from the center of 

the data, not how far it is from the point at which we are trying to predict. 

Thus, for this similarity measure to work we need to hope that the underlying 

model is globally linear.  

 

II.2 Theory and Method 

We then pursue a generalized family of model, defined as: 

𝑦∗ = ∑ 𝑦𝑛𝑤(𝑥𝑛, 𝑥
∗)𝑁

𝑛=1 . 

Here, 𝑤(𝑥𝑛, 𝑥
∗) is the weight that characterizes the similarity between 

the point that will be predicted on (i.e., 𝑥∗) and the existing data points, 𝑥𝑛 

for 𝑛 = 1,2, … ,𝑁 . Roughly speaking, there are two types of methods to 

define this similarity metric.  

One is the K-nearest neighbor (KNN) smoother: 
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𝑤(𝑥𝑛, 𝑥
∗) = {

1

𝑘
, 𝑖𝑓𝑥𝑛 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑥

∗ 

0, 𝑖𝑓𝑥𝑛 𝑖𝑠 𝑁𝑂𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑥
∗
. 

Here, to define the neighbors of a data point, a distance function is needed, 

e.g., a popular one is the Euclidean distance function.   

Note that, a distinct feature of the KNN smoother is the discrete manner 

to define similarity between data points. Which is, a data point is either a 

neighbor of another data point, or not. Not like this, the kernel smoother is 

another approach that has the continuity in similarity between data points. A 

kernel smoother defines 𝑤(𝑥𝑛, 𝑥
∗) in the following manner: 

𝑤(𝑥𝑛, 𝑥
∗) =

𝐾(𝑥𝑛,𝑥
∗)

∑ 𝐾(𝑥𝑛,𝑥
∗)𝑁

𝑛=1
. 

There have been many kernel functions developed, for example, as shown 

in Table 9.1: 

Table 9.1: Some kernel functions used in machine learning 

Kernel function Mathematical form Parameters 

Linear  𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 𝑛𝑢𝑙𝑙 

Polynomial  𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 1)

𝑞
 𝑞 

Gaussian radial 

basis  
𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒

−𝛾‖𝒙𝑖−𝒙𝑗‖
2

 𝛾 ≥ 0 

Laplace radial basis  𝐾(𝒙𝑖 , 𝒙𝑗) = 𝑒
−𝛾‖𝒙𝑖−𝒙𝑗‖ 𝛾 ≥ 0 

Hyperbolic tangent 𝐾(𝒙𝑖 , 𝒙𝑗) = tanh(𝒙𝑖
𝑇𝒙𝑗 + 𝑏) 𝑏 

Sigmoid 𝐾(𝒙𝑖, 𝒙𝑗) = tanh(𝑎𝒙𝑖
𝑇𝒙𝑗 + 𝑏) 𝑎, 𝑏 

Bessel function  

𝐾(𝒙𝑖 , 𝒙𝑗)

=
𝑏𝑒𝑠𝑠𝑒𝑙𝑣+1

𝑛 (𝜎‖𝒙𝑖 − 𝒙𝑗‖)

(‖𝒙𝑖 − 𝒙𝑗‖)
−𝑛(𝑣+1)

 
𝜎, 𝑛, 𝑣 

ANOVA radial 

basis 
𝐾(𝒙𝑖, 𝒙𝑗) = (∑ 𝑒

−𝜎(𝑥𝑖
𝑘−𝑥𝑗

𝑘)
𝑛

𝑘=1
)
𝑑

 𝜎, 𝑑 

  

 



 
 
 

272 
 
 

II.3 R Lab 

Using the established framework in Chapter 5 to generate nonlinear 

dataset, here, we use the following R code to implement the KNN regression 

model. 

# Simulate one batch of data 
n_train <- 100 
coef <- c(-0.68,0.82,-0.417,0.32,-0.68) 
v_noise <- 0.2 
n_df <- 20 
df <- 1:n_df 
tempData <- gen_data(n_train, coef, v_noise) 
# Fit different KNN models 
x <- tempData$x 
X <- cbind(1, ns(x, df = (length(coef) - 1))) 
y <- tempData$y 
# install.packages("FNN") 
require(FNN) 

## Loading required package: FNN 

xy.knn3<- knn.reg(train = x, y = y, k=3) 
xy.knn10<- knn.reg(train = x, y = y, k=10) 
xy.knn50<- knn.reg(train = x, y = y, k=50) 

Then, we draw the true model (as a black curve) and the sampled data 

points using the following R code. Result is shown in Figure 9.2. 

# Plot the data 
plot(y ~ x, col = "gray", lwd = 2) 

And we further layer the fitted KNN regression models with different 

choices on the parameter 𝑘 onto the figure.  

lines(x, X %*% coef, lwd = 3, col = "black") 
lines(x, xy.knn3$pred, lwd = 3, col = "darkorange") 
lines(x, xy.knn10$pred, lwd = 3, col = "dodgerblue4") 
lines(x, xy.knn50$pred, lwd = 3, col = "forestgreen") 
legend(x = "topleft", legend = c("True function", "KNN (k = 3)", 
"KNN (k = 10)", "KNN (k = 50)"),  
       lwd = rep(3, 4), col = c("black", "darkorange", "dodgerblu
e4", "forestgreen"),  
       text.width = 32, cex = 0.85) 



 

Analytics of Small Data 

273 
 

 

Figure 9.2: KNN regression models with different choices on the number 

of nearest neighbors 

 

It can be seen that, with smaller number of nearest neighbors, the fitted 

curve by the KNN regression model is less smooth. That means, a KNN 

regression model with a smaller parameter 𝑘 tends to predict on a data point 

by relying on only a few local data points, ignoring information provided by 

other data points that are far away. This is very different from the spirit of 

linear regression model, in which no matter how far away a data point is, it 

can change predictions on any other data point globally as it changes the 

regression line as a whole.  

A related observation is, in terms of model complexity, the smaller the 

parameter 𝑘, the more complex the regression model. This is often taken as 

a counterintuitive conclusion.  

Similarly, we can repeat the experiments introduced above for 

implementing the kernel smoother regression model. Here, we use the 

Gaussian radial basis kernel function in the kernel smoother regression model. 

Result is shown in Figure 9.3. 

# Repeat the above experiments with kernel smoother 
# Plot the data 
plot(y ~ x, col = "gray", lwd = 2) 
lines(x, X %*% coef, lwd = 3, col = "black") 
lines(ksmooth(x,y, "normal", bandwidth=2),lwd = 3, col = "darkora
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nge") 
lines(ksmooth(x,y, "normal", bandwidth=5),lwd = 3, col = "dodgerb
lue4") 
lines(ksmooth(x,y, "normal", bandwidth=15),lwd = 3, col = "forest
green") 
legend(x = "topright", legend = c("True function", "Kernel Reg (b
w = 2)", "Kernel Reg (bw = 5)", "Kernel Reg (bw = 15)"),  
       lwd = rep(3, 4), col = c("black", "darkorange", "dodgerblu
e4", "forestgreen"),  
       text.width = 32, cex = 0.85) 

 

Figure 9.3: Kernel regression models with different choices on the 

bandwidth parameter of the Gaussian radial basis kernel function 

 

As shown in Figure 9.3, the bandwidth parameter in the kernel smoother 

regression plays a similar role as the parameter 𝑘 in KNN regression. The 

larger the bandwidth, the smoother of the regression curve. On the other 

hand, it can be seen that the curve of kernel smoother is smoother than the 

KNN curves. This observation corresponds to the note we mentioned in the 

beginning of this subsection that KNN is discretely parameterized while 

kernel smoother introduces smoothness and continuity into the definition of 

the neighbors of a data point (thus no hard thresholding is needed to classify 

whether a data point is a neighbor of another data point).   
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III. Conditional Variance Regression Model 

II.1 Rationale and Formulation 

Another common complication when applying linear regression model in 

real-world applications is that the variance of the response variable may also 

change. This phenomenon is called as heteroscedasticity in regression 

analysis. This complication can be taken care of by a conditional variance 

regression model that allows the variance of the response variable to be a 

(usually implicit) function of the input variables. This leads to the following 

model: 

𝑦 = 𝜷𝑇𝒙 + 𝜖𝒙, 

and 𝜖𝒙 is the error term that is a normal distribution with varying variance: 

𝜖𝒙~𝑁(0, 𝜎𝒙
2). 

The remaining issue is how to estimate the regression parameters. 

 

II.2 Theory and Method 

Known 𝝈𝒙
𝟐: If we have known the 𝜎𝒙

2 , this will lead to the following 

scheme for parameter estimation of the unknown regression parameters. The 

likelihood function is: 

−
𝑛

2
ln 2𝜋 −

1

2
∑ log𝜎𝒙𝑛

2𝑁
𝑛=1 −

1

2
∑

(𝑦𝑛−𝜷
𝑇𝒙𝑛)

2

𝜎𝒙𝑛
2

𝑁
𝑛=1 . 

As we have known 𝜎𝒙
2, the parameters to be estimated only involve the last 

part of the likelihood function. Thus, we estimate the parameters that 

minimize 

1

2
∑

(𝑦𝑛−𝜷
𝑇𝒙𝑛)

2

𝜎𝒙𝑛
2

𝑁
𝑛=1 . 

This could be written in the matrix form as 

min
𝜷
(𝒀 − 𝐗𝜷)𝑇𝐖(𝒀 − 𝐗𝜷), 

where 𝐖 is a diagonal matrix with its diagonal elements as 𝐖𝑛𝑛 =
1

𝜎𝒙𝑛
2  .  

To solve this optimization problem, we can take the gradient of the 

objective function and set it to be zero: 
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𝜕(𝒀−𝐗𝜷)𝑇𝐖(𝒀−𝐗𝜷)

𝜕𝜷
= 0, 

which gives rise to the equation: 

𝐗𝑇𝐖(𝒀 − 𝐗𝜷) = 0. 

This leads to the weighted least square estimator of  𝜷 as 

�̂� = (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒀. 

Unknown 𝝈𝒙
𝟐: A more complicated situation, also more realistic situation, 

is that we don’t know 𝜎𝒙
2. This means that we need to estimate 𝜎𝒙

2. To do so, 

it is important to recognize that this problem bears a regression core in its 

formulation. It is to use the input variables 𝒙 to predict a new outcome 

variable, 𝜎𝒙
2. The only complication here is that, we don’t have the “natural 

measurements” of the new outcome variable that is needed to apply the 

regression method. Since, here, the outcome variable 𝜎𝒙
2  is not directly 

measuable. This is a latent variable in statistics.  

To overcome this problem, we can estimate the measurements of the 

latent variable, denoted as �̂�𝒙𝑛
2  for 𝑛 = 1,2, … ,𝑁. This philosophy of taking 

some variables as latent variables and further using statistical 

estimation/inference to fill in the unseen measurements is popular and fertile 

in statistics that underlies many models such as the latent factor models, 

structural equation models, missing values imputation, EM algorithm, 

Gaussian mixture model, graphical models with latent variables, etc.  

Thus, we propose the following steps: 

1. Initialize �̂�𝒙𝑛
2  for 𝑛 = 1,2, … ,𝑁 , by any reasonable approach 

including the random generation of values.  

2. Build a regression model for the mean of the response variable using 

the weighted LS estimator. Estimate �̂� = (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒀 and get 

�̂�𝑛 = �̂�
𝑇𝒙𝑛. 

3. Derive the residuals 𝜀�̂� = 𝑦𝑛 − �̂�𝑛.  
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4. Build a regression model, e.g., using the kernel regression which is a 

nonparametric method, to fit 𝜀�̂�
2 using 𝒙𝑛 for 𝑛 = 1,2,… ,𝑁. 

5. Predict �̂�𝒙𝑛
2  for 𝑛 = 1,2,… ,𝑁 using the fitted regression model in 

Step 3.  

6. Repeat Step 2 – Step 5 until convergence or satisfaction of a stopping 

criteria (could be a fixed number of iterations or small change of 

parameters).  

We can see that the proposed conditional variance regression model is a 

composition of two regular linear regression models to work out the 

heteroscedasticity. This is a typical model stacking strategy to create new 

models based on existing models. 

 

II.3 R Lab 

We first simulate dataset to see how the proposed iterative procedure of 

the conditional variance regression model can work out the heteroscedasticity. 

The simulated data has one predictor and one outcome. The model 

parameters (including the intercept and regression coefficient) are assigned 

values as coef <- c(1,0.5). The variance is a function of the predictor x, 

i.e., which equals to 0.5+0.8*x^2. 

# Conditional variance function 
# Simulate a regression model with heterogeneous variance 
gen_data <- function(n, coef, v_noise) { 
  x <- rnorm(100,0,2) 
  eps <- rnorm(100,0,sapply(x,function(x){0.5+0.8*x^2})) 
  X <- cbind(1,x) 
  y <- as.numeric(X %*% coef + eps) 
  return(data.frame(x = x, y = y)) 
} 
n_train <- 100 
coef <- c(1,0.5) 
v_noise <- 2.5 
tempData <- gen_data(n_train, coef, v_noise) 

While this data presents a typical heteroscedasticity problem, in what 

follows we apply a regular linear regression model with assumption of 
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homogenous variance. The fitted line is shown in Figure 9.4, indicating a 

significant derivation from the true regression model. 

# Fit the data using linear regression model (OLS) 
x <- tempData[, "x"] 
y <- tempData[, "y"] 
fit.ols <- lm(y~x,data=tempData) 
# Plot the data and the models 
x <- tempData$x 
X <- cbind(1, x) 
y <- tempData$y 
plot(y ~ x, col = "gray", lwd = 2) 
# Plot the true model 
lines(x, X %*% coef, lwd = 3, col = "black") 
# Plot the linear regression model (OLS) 
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange") 
legend(x = "topleft", legend = c("True function", "Linear model 
(OLS)"),  
       lwd = rep(4, 4), col = c("black", "darkorange"), text.widt
h = 4, cex = 1) 

 
Figure 9.4: Linear regression model to fit a heteroscedastic dataset 

 

We can generate the residuals based on the fitted regular linear regression 

model, which are plotted in Figure 9.5. A nonlinear regression model, the 

kernel smoother regression model implemented by npreg(), is fitted on these 

residuals. The true function of the variance is also shown as the black line in 
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Figure 9.5. It can be seen that the residuals encode the information for us to 

approximate the underlying true variance function.  

# Plot the residual estimated from the linear regression model (O
LS) 
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2) 
# Plot the true model underlying the variance of the error term 
curve((1+0.8*x^2)^2,col = "black", lwd = 3, add=TRUE) 
# Fit a nonlinear regression model for residuals 
# install.packages("np") 
require(np) 

var1 <- npreg(residuals(fit.ols)^2 ~ x) 

grid.x <- seq(from=min(x),to=max(x),length.out=300) 
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge") 
legend(x = "topleft", legend = c("True function", "Fitted nonline
ar model (1st iter)"),  
       lwd = rep(4, 4), col = c("black", "darkorange"), text.widt
h = 5, cex = 1.2) 

  
Figure 9.5: Nonlinear regression model to fit the residuals 

 

Thus, we fit another linear regression model with weights of the data 

points assigned according to the inverse of the variance, i.e., 

weights=1/fitted(var1), to penalize the influence of the data points that 

have larger variances on the fit of the regression line. The new regression 

model is added into Figure 9.4, which generates Figure 9.6. It can be seen 
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that, with this strategy, the new regression model (the green line) is closer 

with the true model than the regular linear regression model. 

# Fit a linear regression model (WLS) with the weights specified  
# by the fitted nonlinear model of the residuals 
fit.wls <- lm(y~x,weights=1/fitted(var1)) 
plot(y ~ x, col = "gray", lwd = 2,ylim = c(-20,20)) 
# Plot the true model 
lines(x, X %*% coef, lwd = 3, col = "black") 
# Plot the linear regression model (OLS) 
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange") 
# Plot the linear regression model (WLS) with estimated variance 
function 
lines(x, fitted(fit.wls), lwd = 3, col = "forestgreen") 
legend(x = "topleft", legend = c("True function", "Linear (OLS)",
 "Linear (WLS) + estimated variance"),  
       lwd = rep(4, 4), col = c("black", "darkorange","forestgree
n"), text.width = 5, cex = 1) 

 
Figure 9.6: Fit the heteroscedastic dataset with two linear regression 

models using OLS and WLS (that accounts for the heteroscedastic effects 

with a nonlinear regression model to model the variance regression) 

 

This process could proceed with updating the fitted variance function on 

the new residuals, as shown in Figure 9.7. Here, it seems that the use of the 

kernel smoother by npreg hits its limit as a local and data-driven model, that 

could not correctly fit the curve in the two ends. If we have known the form 

of the variance function as a second order polynomial function, we could use 

parametric regression model to attain this fitting.   
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# Plot the residual estimated from the linear regression model (O
LS) 
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2) 
# Plot the true model underlying the variance of the error term 
curve((1+0.8*x^2)^2,col = "black", lwd = 3, add=TRUE) 
# Fit a nonlinear regression model for residuals 
# install.packages("np") 
require(np) 
var2 <- npreg(residuals(fit.wls)^2 ~ x) 

grid.x <- seq(from=min(x),to=max(x),length.out=300) 
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge") 
lines(grid.x,predict(var2,exdat=grid.x), lwd = 3, col = "forestgr
een") 
legend(x = "topleft", legend = c("True function", "Fitted nonline
ar model (1st iter)", "Fitted nonlinear model (2nd iter)"),  
       lwd = rep(4, 4), col = c("black", "darkorange", "forestgre
en"), text.width = 6, cex = 1.2) 

 
Figure 9.7: Nonlinear regression model to fit the residuals in the 2nd 

iteration 

 

Now let’s apply the conditional variance regression model on the AD 

dataset. As what we did in the simulated dataset, we first fit a regular linear 

regression model, then, use the kernel smoother regression model to fit the 

residuals, and further fit a weighted linear regression model with weights of 

the data points being assigned according to the inverse of the variance, i.e., 

weights=1/fitted(var1), to penalize the influence of the data points that 
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have larger variances on the fit of the regression line. Results are shown in 

Figure 9.8.  

AD <- read.csv('AD_bl.csv', header = TRUE) 
str(AD) 

# Fit the data using linear regression model (OLS) 
x <- AD$HippoNV 
y <- AD$MMSCORE 
fit.ols <- lm(y~x,data=AD) 

# Fit a linear regression model (WLS) with the weights specified  
# by the fitted nonlinear model of the residuals 
var1 <- npreg(residuals(fit.ols)^2 ~ HippoNV, data = AD)          

fit.wls <- lm(y~x,weights=1/fitted(var1)) 

plot(y ~ x, col = "gray", lwd = 2) 
# Plot the linear regression model (OLS) 
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange") 
# Plot the linear regression model (WLS) with estimated variance 
function 
lines(x, fitted(fit.wls), lwd = 3, col = "forestgreen") 
legend(x = "topleft", legend = c("Linear (OLS)", "Linear (WLS) + 
estimated variance"),  
       lwd = rep(4, 4), col = c("darkorange","forestgreen"), tex
t.width = 0.2, cex = 1) 

 
Figure 9.8: Fit the heteroscedastic AD dataset with two linear regression 

models using OLS and WLS (that accounts for the heteroscedastic effects 

with a nonlinear regression model to model the variance regression) 
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We can also visualize the fitted variance functions in Figure 9.9 via the 

following R code. 

# Plot the residual estimated from the linear regression model (O
LS) 
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2) 
# Fit a nonlinear regression model for residuals 
# install.packages("np") 
require(np) 
var2 <- npreg(residuals(fit.wls)^2 ~ x) 

grid.x <- seq(from=min(x),to=max(x),length.out=300) 
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge") 
lines(grid.x,predict(var2,exdat=grid.x), lwd = 3, col = "forestgr
een") 
legend(x = "topleft", legend = c("Fitted nonlinear model (1st ite
r)", "Fitted nonlinear model (2nd iter)"),  
       lwd = rep(4, 4), col = c( "darkorange", "forestgreen"), te
xt.width = 0.25, cex = 1.2) 

 
Figure 9.9: Nonlinear regression model to fit the residuals in the 2nd 

iteration for the AD data 

 

It can be seen that, the heteroscedasticity problem is significant in this 

problem. Learning the variance function is helpful in this context in terms of 

at least two aspects. First, in terms of the statistical aspect, it improves the 

fitting of the regression line. Second, knowing the variance function itself is 
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important knowledge in healthcare, e.g., as variance implies unpredictability 

or low quality in healthcare operations.   

 

II.4 Remark 

For regression problems, the interest is usually on the modeling of the 

relationship between the mean of the outcome variable with the input 

variables. Thus, when there is heteroscedasticity in the data, a nonparametric 

regression method is recommended to estimate the latent variance 

information, more from a curve fitting perspective which is to smooth and 

estimate, rather than a modeling perspective to study the relationship 

between the outcome variable with input variables. But, of course, this usual 

tendency doesn’t exclude the possibility that we can still study how the input 

variables affect the variance of the response variable explicitly. Specifically, 

as the linear regression as we know is a model to link the mean of 𝑌 with the 

input variables 𝑋, we can develop an analogical linear regression model to 

link the variance of  𝑌 with the input variables 𝑋. The iterative procedure 

developed above is still applicable here.  

 

IV. System Monitoring as a Decision Tree Model 

IV.1 Rationale and Formulation 

Another method we’d like to introduce is an interesting framework that 

was proposed1 to convert quality monitoring problem in statistical quality 

control into a classification problem. This is built on the following insight 

about quality monitoring as a statistical problem that does things with data. 

In a quality monitoring problem, we often collect the so-called “reference 

data” from the process in normal conditions. The objective of quality 

monitoring of this process is to trigger alerts if the new data that come in real 

time deviate from the reference data. It is hoped that the alerts could 

                                                      
1 Deng, H., Runger, G. and Tuv, E. System monitoring with real-time contrasts. Journal of 

quality technology, 2012  
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correspond to real anomaly happening in the process, with a small rate of 

false positive (i.e., alerts triggered when the process is actually normal).  

Figure 9.10 shows a monitoring problem. At time 1 to time 40, the 

reference data are collected from a normal process. From time 41, we 

monitor the process with real-time data. As the process from time 41 to time 

80 is under normal condition, we should not trigger any alert. From time 81, 

the process is abnormal and therefore it is expect that the quality monitoring 

system should trigger an alert as soon as possible.  

 

 
Figure 9.10: Illustration of the quality monitoring problem 

 

In this 1-dimensional example, i.e., monitoring a process using one 

variable, it is easy to see that the data has an increased mean. However, when 

there are multiple dimensions, it is desirable to know which variables are 

causing the process abnormal. This so-called fault diagnosis problem is 

crucial. In this section, we discuss how we covert the problem to a 

classification problem where decision trees can be used for both monitoring 

and diagnosis.  

 

IV.2 Theory/Method 

Let 𝒙 to be a 𝑝 dimensional vector of the process. First, we collect a few 

data points under normal condition which form the reference data. Let 

𝑓0(𝒙) denote the distribution of the 𝑝 process variables when the system is 
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under normal condition. Let 𝑓1(𝒙) denote the distribution of the data points 

in monitoring. The goal of monitoring is to trigger an alert as quick as 

possible if 𝑓1(𝒙) differs from 𝑓0(𝒙), while at the same time, to reduce false 

alert when 𝑓1(𝒙) is the same as 𝑓0(𝒙).  

One may notice that this is a typical scenario considered in multivariate 

quality monitoring literature. Indeed, if the variables are continuous as 

considered in most existing multivariate quality control charts, one may use 

traditional control charts like Hoteling’s 𝑇2 chart. However, these methods 

have difficulty handling more complex datasets, e.g., having both categorical 

and continuous variables. With the transformation of the monitoring 

problem into a stack of classification problems, we can overcome these data 

challenges as described in what follows.  

 

Table 9.2: An exemplary time series dataset with 4 time points 

Time 1 2 3 4 

Value 2 1 3 3 

  

 

Here we introduce the real-time contrasts method (RTC).  The key idea 

of RTC method is to have a sliding window, with length of 𝐿, that includes 

the most recent data points to be compared with the reference data. 

Specifically, we label the reference data as one class, and the data points in 

the sliding window as another class, formulating a classification problem. The 

intuition is that, if the two data sets come from the same distribution, it is 

difficult to classify the two data sets and will result in a large classification 

error. But, if the training error is small, the real-time data may be different 

from the reference data, and will result in a small classification error. 

Therefore, the training error in building the classification model can be used 

as a metric indicating the difficulty classifying the two datasets. 
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Here we illustrate this intuition through a 1-dimenaional problem where 

the variable takes values either as 1 or 2. We also assume that, the reference 

data have been collected as {1,2}. The collected data for monitoring is shown 

in the Table 9.2. 

To monitor the process, we use a window size of 2. That is say, the first 

monitoring action takes place at time 2 since we can collect two data points 

to compare with the reference data. At time 2, the 2 most recent data points 

are 1 and 2. The reference data set {1,2} is labeled as class 0, and the data 

points captured by the window with size of 2, i.e., {2,1}, are labeled as class 

1. It can be seen that these two data sets are identical. Thus, the classification 

error rate is 0.5, which is very large.  

At time 3, the sliding window now includes data points {1,3}. A 

classification rule “value <= 2, then class 0; else class 1” would achieve the 

best classification error rate as 0.25.   

At time 4, the sliding window includes data points {3,3}. The same 

classification rule “value <= 2, then class 0; else class 1” can classify all 

example correctly with error rate of 0.  

Through this example we can see that the classification error rate could 

be a monitoring statistic to guide the triggering of alerts.  While we use a 

simple classification rule in this example since we only have one process 

variable with very simple value domains, in more complex problems, we can 

use other classification models such as Random forest models.  

Actually, through in-depth research into this idea of directly using 

classification error rate as the monitoring statistic, a limitation soon reveals 

itself. Considering the number of data points in the monitoring window, 

which is 𝐿. The number of possible distinct classification error rate values are 

actually limited to be 𝐿 + 1. This suggests that, while the monitoring statistic 

should be a continuum, the resolution of the classification error rate to reflect 

the continuum maybe limited if the window size is too small. This will result 

in gaps between the monitoring statistics, failing to capture changes that 

happen in the gaps which are blind zones. 
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As a remedy, the probability estimates of the data points can be used to 

replace the errors of the data points. The probability estimates are continuous 

indicators, while the errors are binary indicators. Then, the sum of the 

probability estimates from all data points in the sliding window can be used 

for monitoring, which is defined as: 

𝑝𝑡 =
∑ 𝑝1(𝒙𝑖)
𝑤
𝑖=1

𝑤
. 

Here, 𝒙𝑖 is the 𝑖𝑡ℎdata point in the sliding window, 𝑤 is the window size, 

and �̂�1(𝒙𝑖) is the probability estimate of 𝒙𝑖 belonging to 𝑓1(𝒙). At each time 

point in monitoring, we can obtain a 𝑝𝑡. Following the tradition of control 

chart, we could chart the time series of 𝑝𝑡 and observe the patterns to see if 

alerts should be triggered. 

Besides this monitoring capacity, on the other hand, we could also use the 

classification model for fault diagnosis. Specifically, when the random forest 

is used for classification, the importance scores from random forests can be 

used for fault diagnosis. When process is under normal conditions and the 

classification errors are expected to be high, the importance scores are 

expected to be equal among process variables as none of them contribute to 

the classification problem. When process is abnormal, classification errors 

should be reduced, and the variables responsible for the process abnormality 

should now have larger importance scores. This gives us the foundation for 

using random forest for fault diagnosis.  

Note that, under the RTC framework, the size of the sliding window is 

an important parameter. When the window is too long, the method requires 

a large number of real-time data in each monitoring epoch, which can delay 

the identification of abnormal patterns. In contrast, if the window is too 

short, the classifiers built on the small data sets may be unstable and are prone 

to more false positives. In our R lab, we will explore this phenomenon 

further.  
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IV.3 R Lab 

We have written up the RTC method into the R function, Monitoring(), 

as shown in below. The Monitoring function takes two datasets as input, the 

first one being the reference data, and the second one being the real-time data 

points. The window size also should be provided. The function returns a few 

monitoring statistics for each real-time data point, and the importance score 

of each variable. 

library(dplyr) 
library(tidyr) 
library(randomForest) 
library(ggplot2) 
 
theme_set(theme_gray(base_size = 15) )  
 
# define monitoring function. data0: reference data; data.real.ti
me: real-time data; wsz: window size 
Monitoring <- function( data0, data.real.time, wsz ){ 
  num.data.points <- nrow(data.real.time) 
  stat.mat <- NULL 
  importance.mat <- NULL 
 
  for( i in 1:num.data.points  ){ 
    # at the start of monitoring, when real-time data size is sma
ll than the window size, combine the real-time data points and ra
ndom samples from the reference data to form a data set of wsz 
    if(i<wsz){ 
      sample.size.from.reference <- wsz - i 
      sample.reference <- data0[ sample(nrow(data0),sample.size.f
rom.reference,replace = TRUE), ] 
      current.real.time.data <- rbind( sample.reference, data.rea
l.time[1:i,,drop=FALSE]   ) 
    }else{ 
      current.real.time.data <-  data.real.time[(i-wsz+1):i,,drop
=FALSE]  
    } 
    current.real.time.data$class <- 1 
    data <- rbind( data0, current.real.time.data ) 
    colnames(data) <- c(paste0("X",1:(ncol(data)-1)),"Class") 
    data$Class <- as.factor(data$Class) 
     
    # apply random forests to the data 
    my.rf <- randomForest(Class ~.,sampsize=c(wsz,wsz), data=dat
a) 
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    # get importance score 
    importance.mat <- rbind( importance.mat, t( my.rf$importance 
 ) ) 
    # get monitoring statistics 
    ooblist <- my.rf[5] 
    oobcolumn=matrix(c(ooblist[[1]]),2:3) 
    ooberrornormal= (oobcolumn[,3])[1] 
    ooberrorabnormal=(oobcolumn[,3])[2] 
     
    temp=my.rf[6] 
    p1vote <- mean( temp$votes[,2][ (nrow(data0)+1) : nrow(data)
 ] ) 
     
    this.stat <- c(ooberrornormal,ooberrorabnormal,p1vote) 
    stat.mat <- rbind(stat.mat, this.stat) 
  } 
  result <- list(importance.mat = importance.mat,  stat.mat = sta
t.mat) 
  return(result) 
} 

First, let’s consider a 2-dimesional data. The reference data follow a 

normal distribution with mean of 0 and standard deviation of 1. The real-

time data come from two distributions. The first 100 data points have the 

same distribution as the reference data, while the second 100 data points have 

the second variable changed with mean of 2. Note that, here we label the 

reference data with class 0 and the real-time data with class 1.  

# data generation 
# sizes of reference data, real-time data without change, and rea
l-time data with changes 
length0 <- 100 
length1 <- 100 
length2 <- 100 
 
# 2-dimension 
dimension <- 2 
 
# reference data 
data0 <- rnorm( dimension * length0, mean = 0, sd = 1) 
# real-time data with no change 
data1 <- rnorm( dimension * length2, mean = 0, sd = 1) 
# real-time data different from the reference data in the second 
the variable 
data2 <- cbind( V1 = rnorm( 1 * length1, mean = 0, sd = 1), V2 = 
rnorm( 1 * length1, mean = 2, sd = 1) ) 
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# convert to data frame 
data0 <- matrix(data0, nrow = length0, byrow = TRUE) %>% as.data.
frame() 
data1 <- matrix(data1, nrow = length2, byrow = TRUE) %>% as.data.
frame() 
data2 <- data2 %>% as.data.frame() 
 
# assign variable names 
colnames( data0 ) <- paste0("X",1:ncol(data0)) 
colnames( data1 ) <- paste0("X",1:ncol(data1)) 
colnames( data2 ) <- paste0("X",1:ncol(data2)) 
 
# assign reference data with class 0 and real-time data with clas
s 1 
data0 <- data0 %>% mutate(class = 0)  
data1 <- data1 %>% mutate(class = 1) 
data2 <- data2 %>% mutate(class = 1) 
 
# real-time data consists of normal data and abnormal data 
data.real.time <- rbind(data1,data2) 

 

 

Figure 9.11: Scatterplot of the generated data points in the first 100 time 

points that come from the process under normal condition  

 

Before we run the Monitor function, we show the scatterplot of the 
reference dataset and the dataset from the first 100 time points to obtain a 
visual sense of the data. 
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data.plot <- rbind( data0, data1 ) %>% mutate(class = factor(clas
s)) 
ggplot(data.plot, aes(x=X1, y=X2, shape = class, color=class)) + 
  geom_point(size=3) 

Then we can obtain Figure 9.11. It can be seen that the two sets of data 
points are similar. 

We also show the scatterplot of the reference dataset and the dataset from 

the second 100 time points.  

data.plot <- rbind( data0, data2 ) %>% mutate(class = factor(clas
s)) 
ggplot(data.plot, aes(x=X1, y=X2, shape = class, color=class)) + 
  geom_point(size=3) 

Then we can obtain Figure 9.12. It can be seen that for the real-time data 

set, X_2 has changed mean from 0 to 2. 

 

 

Figure 9.12: Scatterplot of the generated data points in the second 100 

time points that come from the process under abnormal condition  

 

Now we are ready to apply the RTC method. A window size of 10 is 

applied for monitoring. The error rates from the reference data, and the real-

time data, and the probability estimates for the second class are shown in 

Figure 9.13 drew by the following R code.  
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wsz <- 10 
result <- Monitoring( data0, data.real.time, wsz ) 
stat.mat <- result$stat.mat 
importance.mat <- result$importance.mat 
 
# plot different monitor statistics 
stat.mat <- data.frame(stat.mat) 
stat.mat$id <- 1:nrow(stat.mat) 
colnames(stat.mat) <- c("error0","error1","prob","id") 
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob) 
ggplot(stat.mat,aes(x=id,y=statistics,color=type)) + geom_line(li
netype = "dashed") + geom_point() + geom_point(size=2) 

 

 

Figure 9.13: Chart of the monitoring statistics from time 1 to time 200. 

Three monitoring statistics are shown: error0 denotes for the error rate in 

Class 0, error1 denotes for the error rate in Class 1, and prob denotes for 

the probability estimates of the data points 

 

As we have known that a process shift happened on X2 after the 100th 

data point, a good monitor statistic should significantly signal the process 

change after the 100th data point, the sooner the better. As we can see, there 

is a slight decrease for the error rates from the reference dataset, but the 

decrease is not substantial. The probability estimates of the data points in the 

reference data have more obvious increase. Similar observation can be made 
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for the error rates from the dataset captured by the sliding window. However, 

the error rates from the reference data jump among a small number of 

distinct values. As mentioned earlier, the number of distinct values would 

further reduce with a smaller sliding window. Thus, this experiment confirms 

that the probability estimates lead to smoother monitoring statistic and have 

a significant change during the process transition phase. 

 

 

Figure 9.14: Chart of the importance score of the two process variables 

from time 1 to time 200   

 

Next, let’s consider fault diagnosis. Variable importance scores from the 

two variables from the random forests are shown in Figure 9.14 drew by the 

following R code.  

# plot importance scores for diagnosis 
importance.mat <- data.frame(importance.mat) 
importance.mat$id <- 1:nrow(importance.mat) 
colnames(importance.mat) <- c("X1","X2","id") 
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2) 
 
ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed")  + geom_point(size=2) 
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From Figure 9.14, we can see that the importance scores of X2 

significantly increase after the 100th point. This indicates that X2 plays an 

important role in improving the classification and may be responsible for the 

process change. 

 

 

Figure 9.15: Chart of the monitoring statistics from time 1 to time 200 

(window size increases to 20)  

 

As we have mentioned, the size of the window for monitoring is an 

important parameter. Here, to see its effect, the window size is increased to 

20. The monitoring statistics and importance scores are re-plotted in Figure 

9.15 and Figure 9.16.  

 

# change window size to 20 
wsz <- 20 
result <- Monitoring( data0, data.real.time, wsz ) 
stat.mat <- result$stat.mat 
importance.mat <- result$importance.mat 
 
# plot different monitor statistics 
stat.mat <- data.frame(stat.mat) 
stat.mat$id <- 1:nrow(stat.mat) 
colnames(stat.mat) <- c("error0","error1","prob","id") 
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob) 
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ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2) 

# plot importance scores for diagnosis 
importance.mat <- data.frame(importance.mat) 
importance.mat$id <- 1:nrow(importance.mat) 
colnames(importance.mat) <- c("X1","X2","id") 
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2) 
 
ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed")  + geom_point(size=2) 

 

 

Figure 9.16: Chart of the importance score of the two process variables 

from time 1 to time 200 (window size increases to 20) 

 

Compared to the previous results with window size of 10, the monitoring 

statistics on the changed real-time data points have a clearer increase from 

the un-changed real-time data. Similarly, the increase of the importance score 

of X2 is stronger. However, the change of the monitoring statistics and 

importance scores is slightly slower than the change with a smaller window. 

Therefore, a large window size can lead to more confident alert, but with a 

slower speed. 

Now, let’s change the window size to 5. The monitoring statistics and 

importance scores are re-plotted in Figure 9.17 and Figure 9.18. 
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# change window size to 5 
wsz <- 5 
result <- Monitoring( data0, data.real.time, wsz ) 
stat.mat <- result$stat.mat 
importance.mat <- result$importance.mat 
 
# plot different monitor statistics 
stat.mat <- data.frame(stat.mat) 
stat.mat$id <- 1:nrow(stat.mat) 
colnames(stat.mat) <- c("error0","error1","prob","id") 
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob) 
ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2) 

 

 
Figure 9.17: Chart of the monitoring statistics from time 1 to time 200 

(window size decreases to 5)  

 

# plot importance scores for diagnosis 
importance.mat <- data.frame(importance.mat) 
importance.mat$id <- 1:nrow(importance.mat) 
colnames(importance.mat) <- c("X1","X2","id") 
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2) 
 
ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed")  + geom_point(size=2) 
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Figure 9.18: Chart of the importance score of the two process variables 

from time 1 to time 200 (window size decreases to 5) 

 

Obviously, the monitoring statistic seems to be more noisy, producing 

less confident patterns, but it raises quicker alert at the 101th time point.  

Now, let’s consider a 10-dimensional dataset. In this example, two 

variables' means change from 0 to 2 in the second 100 data points. 

# 10-dimensions, with 2 variables being changed from the normal c
ondition 
dimension <- 10 
wsz <- 5 
# reference data 
data0 <- rnorm( dimension * length0, mean = 0, sd = 1) 
# real-time data with no change 
data1 <- rnorm( dimension * length1, mean = 0, sd = 1) 
# real-time data different from the reference data in the second 
the variable 
data2 <- c( rnorm( (dimension - 2) * length2, mean = 0, sd = 1), 
rnorm( (2) * length2, mean = 20, sd = 1)) 
 
 
# convert to data frame 
data0 <- matrix(data0, nrow = length0, byrow = TRUE) %>% as.data.
frame() 
data1 <- matrix(data1, nrow = length1, byrow = TRUE) %>% as.data.
frame() 
data2 <- matrix(data2, ncol = 10, byrow = FALSE) %>% as.data.fram
e() 
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# assign reference data with class 0 and real-time data with clas
s 1 
data0 <- data0 %>% mutate(class = 0) 
data1 <- data1 %>% mutate(class = 1) 
data2 <- data2 %>% mutate(class = 1) 
 
# real-time data consists of normal data and abnormal data 
data.real.time <- rbind(data1,data2) 

 

 

Figure 9.19: Chart of the monitoring statistics from time 1 to time 200 

(window size is 10) 

 

10 dimensions are difficult to visualize and monitor. Encouragingly, the 

monitoring statistics shown in Figure 9.19 shows that the RTC method is still 

capable of capturing the changes. It is clear in Figure 9.19 that all the 

monitoring statistics change after the 101th time point, and the importance 

scores in Figure 9.20 also indicate the change is due to X9 and X10. The 

following R codes generated Figure 9.19. 

result <- Monitoring( data0, data.real.time, wsz ) 
stat.mat <- result$stat.mat 
importance.mat <- result$importance.mat 
 
# plot different monitor statistics 
stat.mat <- data.frame(stat.mat) 
stat.mat$id <- 1:nrow(stat.mat) 
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colnames(stat.mat) <- c("error0","error1","prob","id") 
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob) 
ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2) 

 

 

Figure 9.20: Chart of the importance score of the ten process variables 

from time 1 to time 200 (window size is 10) 

 

The following R codes generated Figure 9.20. 

# plot importance scores for diagnosis 
importance.mat <- data.frame(importance.mat) 
importance.mat$id <- 1:nrow(importance.mat) 
# colnames(importance.mat) <- c("X1","X2","id") 
importance.mat <- importance.mat %>% gather(variable, importance,
X1:X10) 
importance.mat$variable <- factor( importance.mat$variable, level
s = paste0( "X", 1:10  ) ) 
# levels(importance.mat$variable) <- paste0( "X", 1:10  ) 
ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed")  + geom_point(size=2) 

 

IV.4 Remarks 

There is an important technical aspect to implement the RTC method. 

Realistically, to capture the normal conditions of a process, many data points 
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are needed to define the reference dataset. On the other hand, to capture 

process changes more sensitively, the window size for online monitoring 

should not be too large. Thus, comparing with the sample size in the 

reference dataset, an effective window size is typically substantially smaller 

than the size of reference data. Therefore, this usually leads to a highly 

imbalanced classification problem.  

As a remedy, the random forest model can handle class imbalance by 

under-sampling the reference data to be the same size as the sliding window 

data for each tree. That is to say, instead of sampling uniformly the data 

points for each tree (as shown in the left figure in Figure 9.21), the same 

number of samples are selected from the reference data and the sliding 

window data (as shown in the right figure in Figure 9.21).  

 

 
Figure 9.21: Regular sampling (left) and purposeful equal sampling (right) 

by random forest to grow its trees 

 

IV. Exercises 

Data analysis 

1. Find 10 regression datasets from the UCI data repository or R 

datasets. Build kernel regression model, KNN regression model, and 

linear regression models. Conduct model selection and validation. 

Use cross-validation to select the best models. Compare the models 

and comment on their applications on these datasets.  
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2. Identify 3 datasets from the UCI data repository or R datasets that 

the heteroscedasticity may be a problem. Build the conditional 

variance regression model on these datasets. Compare the 

conditional variance regression model with linear regression model. 

 

Programming  

3. Use bootstrap to show the conditional variance regression model is 

significantly better than linear regression model on the datasets you 

have selected that have the problem of heteroscedasticity. Write your 

own R script to implement this idea. Make sure that, for datasets that 

have no concern of heteroscedasticity, your approach would not 

always advocate for the use of conditional variance regression model. 

4. Implement the tree-based system monitoring method on a high-

dimensional dataset with more than 100 variables. You can simulate 

such a dataset following the R lab in this chapter. See if the tree-

based system monitoring method can lead to quick detection of 

process change, and accurate fault diagnosis (i.e., make sure in your 

data, only a few variables are responsible for the process change). 
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CHAPTER 10: SYNTHESIS    
INTREES /PIPEL INE  ENGINEERING      

 

 

 

 

 

I. Overview 

Chapter 10 is about “synthesis”. It recognizes the practical dimension of 

solving real-world problems, such as building pipelines that combine and 

streamline a variety of models and operations. This is nonetheless a diverse 

topic and anticipates many possible alternatives, depending on the particular 

problems and contexts.  To give one example, here, we introduce the method 

implemented in the R package, InTrees1 , which combines decision tree, 

random forest, and feature selection such as LASSO. Note that, as an 

overarching framework, its combinatory power is not limited with these 

models.  

 

                                                      
1  Deng, H. Interpreting tree ensembles with inTrees. Manuscript available at: 

https://arxiv.org/abs/1408.5456  
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II. InTrees 

II.1 Rationale and Formulation 

As we have seen that, the linear regression models are advantageous in 

providing a linear characterization of a multivariate system. Although its 

ostensible interpretability comes with a question mark, it is undoubtable a 

more interpretable model than the tree models. Tree models are more like 

approximating the data and build on their power in capturing complex 

interactions between variables. Given their different advantages, it is natural 

to wonder if we could combine both models and get the best of both. From 

a pragmatic perspective, as Prof. George Box has pointed out, “all models are 

wrong, some are useful”, neither model is the truth, but we can always make the 

model better in terms of some quantitative criterion such as prediction 

accuracy on testing data or qualitative criterion such as interpretability.   

To combine the two models, first, we may notice that the two models 

employ different semantics: the regression model uses an equation-based 

semantics, that is more mathematically and formative; the tree model uses a 

rule-based semantics, which is more intuitive and heuristic. Can we have a 

hybrid model that combines both semantics? Sure, we could. One approach 

we can use is to plug in one semantics into another.  

For example, while regression model puts variables into the equation, the 

variables are defined by users. So, what are the variables?  

This is the starting point of InTrees. It takes rules as the variables that can 

be put into a regression model. To get the rules, InTrees harvests the power 

of random forest to convert the original raw data into a new dataset whose 

variables are the rules. As we know, rules represent complex interactions 

between variables. In this way, we have the best parts of both methods, while 

the rules capture the variable-level patterns in the data, and the regression 

equation captures the global effects of these patterns in predicting the 

outcome variable.  
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II.2 Theory and Method 

Consider the following dataset that has 2 predictors and 7 instances as 

shown in Table 10.1. 

 

Table 10.1: An exemplary dataset with 7 instances 

ID 𝑋1 𝑋2 Class 

1 1 1 C0 

2 1 0 C1 

3 0 1 C1 

4 0 0 C1 

5 0 0 C0 

6 0 0 C0 

7 0 0 C0 

 

Importance scores from the random forest model can provide insights 

regarding which variables are important, however, it is still not 

straightforward to understand. For example, the importance scores from 

random forests applied to the dataset in Table 10.1 are shown in Figure 10.1. 

We can only know that 𝑋1 and 𝑋2 have similar importance scores, but it is 

unclear how exactly these variables work together to predict the class.  

 

 
Figure 10.1: Importance score of two variables  

 

To this end, the inTrees framework, illustrated in Figure 10.2, was 

proposed to extract, measure, prune, and select rules from a tree ensemble. 

It will further calculate frequent variable interactions, and summarize rules 
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into a prediction model (rules become the variables). The framework has 

been implemented in the ``inTrees" R package. In the following we 

introduce each functionality of the inTrees framework.  

 

 
Figure 10.2: The pipeline of inTrees  

 

Rule extraction and measuring: A decision tree can be dissembled into 

a set of rules. For example, considering the decision tree shown in Figure 

10.3, which was created as one tree of the random forest model applied on 

the dataset shown in Table 1. It can be seen that the tree was built based on 

the resampled dataset that includes the instances {1,1,2,2,7,7,7}. In other 

words, in this resampled dataset, the instance (ID: 1) was resampled twice, 

the instance (ID: 2) was resampled twice, and the instance (ID: 7) was 

resampled three times.  In the tree, the root and inner nodes are labeled with 

the data point IDs and leaf nodes are labeled with the data point IDs and the 

decisions (i.e., which class to predict). Here, three rules can be 

extracted:  { 𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} , { 𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} , 

{𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}. 



 

Analytics of Small Data 

307 
 

 

 

Figure 10.3: An exemplary decision tree  

 

Generally, in a decision tree, a rule can be extracted from the root node 

to each leaf node as  {𝑋𝑖1 = 𝑎𝑖1 , … , 𝑋𝑖𝑘  = 𝑎𝑖𝑘  → 𝑇 = 𝑡} , where 𝑋𝑖𝑗  

represents the variable used in the path from the root node to a leaf node, 

𝑋𝑖𝑗 = 𝑎𝑖𝑗 represents the criterion for splitting at node 𝑖𝑗, and 𝑇 = 𝑡  is the 

outcome at the leaf node. Note 𝑎𝑖𝑗  can be a range when 𝑋𝑖𝑗  is numerical and 

a set of values when it is categorical.   

Thus, for a random forest model, we can extract a set of rules by 

dissembling all its trees. There is one complication, though, that in random 

forest, as we have mentioned in Chapter 4, each tree is built on a subset of 

samples and a subset of features in order to be a weak model. That means, 

we need to revise the outcome of each rule that maybe different from the 

original outcome associated with this rule provided by the tree. In the inTrees 

framework, the outcomes from the original rules are ignored. Instead, the 

outcomes are re-calculated using all the training data, such that the most 

frequent class is used as the outcome.  

For example, for the rule {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}  derived from the 

decision tree shown in Figure 10.3, the three data points (the same instance) 

have the class of 𝐶1. However, when using all the raining data, there are five 

data points (IDs: 3-7) satisfying 𝑋1 = 0, and 3/5 of the data points have class 
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of 𝐶0. Therefore, the rule should be updated with the outcome as 𝐶0. The 

other two rules remain the same since the classes from the tree are consistent 

with the most frequent classes when applied to all the training data.  

After we collect all the rules from the random forest model, the rules are 

evaluated with three criteria. The length of a rule is defined as the number 

of variable-value pairs in the rule condition. The frequency of a rule is the 

proportion of data points satisfying the rule condition, the left-hand part of 

the rule. The error is the error rate of the rule. For classification problems, it 

is the number of data points incorrectly identified by the rule divided by the 

number of data points satisfying the condition. For regression problems, it is 

mean squared error defined as: 

𝑒𝑟𝑟 =  
1

𝑘
∑ ( 𝑡𝑖
𝑘
𝑖=1 − �̃� )2, 

where 𝑘 is the number of data points in the leaf node,  𝑡𝑖 is the value of the 

response variable of the 𝑖𝑡ℎ data point, and �̃� is the prediction at the leaf node.  

For the illustrative example and decision tree, the evaluation of the three 

rules are shown in the Table 10.2. 

 

Table 10.2: Evaluation of the three rules extracted from the tree shown in 

Figure 10.3 

ID Rule length frequency error 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 1 5/7 2/5 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 2 1/7 0 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 1 1/7 0 

 

 

Prune rules: As each tree in a tree ensemble can be weak, the rules we 

collect can include irrelevant and redundant variable-value pairs. Therefore, 

it may be beneficial to remove/prune irrelevant and redundant rules.  
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Let 𝑝𝑖 denote the 𝑖𝑡ℎ variable-value pair of a rule condition, such that a 

rule can be written as < 𝑝1, … , 𝑝𝑘 > → 𝑇 = 𝑡. To prune the rule, inTrees 

uses leave-one-out pruning, that is, at each round, removes one pair and 

checks how much error this removal will induce. The pair with the least error 

increase is removed, if it is also below a pre-specified threshold. The increase 

of error is referred as the decay in the terminology of inTrees.  

Two types of decay are defined. The first one is the absolute error increase, 

defined as: 

𝑑𝑒𝑐𝑎𝑦𝑖 = 𝐸𝑟𝑟−𝑖 − 𝐸𝑟𝑟. 

The second one is the relative error increase, defined as: 

𝑑𝑒𝑐𝑎𝑦𝑖 =
𝐸𝑟𝑟−𝑖−𝐸𝑟𝑟

max (𝐸𝑟𝑟,𝑠)
, 

where 𝐸𝑟𝑟 is the error of the original rule, 𝐸𝑟𝑟−𝑖 is the error of the rule with 

the 𝑝𝑖 removed, and 𝑠 is a small positive constant (e.g., 0.001) that bounds 

the value of 𝑑𝑒𝑐𝑎𝑦 when 𝐸𝑟𝑟 is zero or close to zero.  

 Take rule {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} for example. The error for 

this rule is known to be 0 if we check the illustrative dataset aforementioned. 

Assume that the threshold is 0.05. Now remove 𝑋1! = 0  from the rule 

condition, and the new rule becomes {𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}, which has an 

error of 3/5. Therefore, the absolute error increase is 3/5. Therefore, 𝑋1! =

0 should not be pruned.  

On the other hand, we can also see that the relative error increase is 
3

5∗𝑠
. 

With a default value as 𝑠 = 0.001, the relative error increase is also large, 

indicating that 𝑋1! = 0 should not be pruned.  

Now let’s remove 𝑋2 = 0. The resulting rule {𝑋1! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 

has an error of 1/2. Therefore, removing 𝑋2 = 0 also hurts the accuracy of 

the rule. The rule should not be pruned.  
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Let’s do another example. Suppose that the rules are built with the 

following data set shown in Table 10.3. 

 

Table 10.3: An exemplary dataset 

ID 𝑋1 𝑋2 Class 

1 1 0 𝐶1 

2 1 0 𝐶1 

3 1 1 𝐶0 

4 0 1 𝐶0 

 

 

On this dataset, the rule {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} has an error 

of 0. The error after removing 𝑋1! = 0 is still 0, therefore, both the absolute 

and relative error increase are 0. The error after removing 𝑋2 = 0 becomes 

1/4. Therefore, the absolute error increase is 0.25, and the relative error 

increase is 
1

4∗𝑠
 . Thus, 𝑋1 = 0 should be removed, and the new pruned rule 

becomes {𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}. This pruning process will continue. After 

removing 𝑋2 = 0 from the rule, the rule is effectively a random guess, thus 

the error becomes 0.5. This indicates that no variable-value pair can be 

removed, the pruning should be stopped, and the final rule is {𝑋2 = 0 →

𝐶𝑙𝑎𝑠𝑠 = 𝐶1}. 

 

Select rules: In previous sections, each rule is pruned and the pruned 

rules can be ranked by accuracy, frequency and complexity. However, a tree 

ensemble can generate numerous rules, and many of them can be redundant. 

If the top rules tend to be redundant rules, the ranked rule set is again hard 

to interpret. Therefore, selecting a non-redundant rule set is valuable for 

interpretation. 
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The inTrees framework casts the rule selection problem into the feature 

selection formulation. This is built on the creation of a new dataset based on 

the rule set that binarizes the original dataset. For example, continue our 

discussion of the dataset with 7 instances as shown in Table 10.1, the three 

rules we have collected are shown in Table 10.4. 

 

Table 10.4: The three rules 

ID Rule 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 

 

Table 10.5: The binarized dataset of Table 10.1 by the rules in Table 10.4 

ID 𝑍1 𝑍2 𝑍3 Class 

1 0 0 1 C0 

2 0 1 0 C1 

3 1 0 0 C1 

4 1 0 0 C1 

5 1 0 0 C0 

6 1 0 0 C0 

7 1 0 0 C0 

 

Consider {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}  first. In the new dataset, a binary 

feature 𝑍1 is created for the condition. The instances satisfying the condition 

𝑋1 = 0 include {3,4,5,6,7} and therefore, the binary feature values of the 

instances are {0,0,1,1,1,1,1}. For {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1},  only 

instance 2 satisfies the condition, and therefore, the binary feature values of 

the instances for the second rule is {0,1,0,0,0,0,0}. Similarly, the feature 
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values for the third rule is {1,0,0,0,0,0,0}. Following this process, the new 

converted data set is shown in Table 10.5. 

Now a feature selection method can be applied on this new data set. The 

goal of feature selection is to select a subset of relevant but not redundant 

features from the original features. Feature selection methods include  𝐿1 

regularized logistics regression (or LASSO) and regularized random forests 

are used in the inTrees R package. Suppose a feature selection method selects 

the feature subset as {𝑍1, 𝑍2}. It indicates that only the first and second rules 

should be used in prediction.  

Note that the binary feature representation does not include the 

information about the length of rules. Given two rules with the same 

predictive power, the rule with a smaller length may be preferred in terms of 

interpretability. In the inTrees framework, the guided regularized random 

forests are used. The guided regularized random forests (GRRF) can assign 

a weight to each feature, so that when two features have similar predictive 

power, the feature with more weight is more likely to be selected. In this case, 

shorter rules are more likely to be selected. 

 

Frequent variable interaction: The inTrees framework further provides 

extraction of variable interactions that have been important in the selected 

rules. A rule essentially encodes these interaction information, e.g., the rule 

{𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} captures the interaction between 𝑋1 and 

𝑋2.  

Consider the following set of rules extracted by inTrees. Association rule 

analysis is used for mining the frequent variable-value pairs from the rules. 

In particular, each variable-value pair is considered as an item.  

First, let’s consider all the rule conditions (left-hand side of the rules). 

Define the support of a particular interaction pattern (e.g., 𝑋1 and 𝑋2) as the 

number of rules that encode this interaction in the rule set, divided by the 

size of the rule set (size = 4 for the illustrative example). For example, the 
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support of each variable interaction pattern extracted from the rules in Table 

10.6 is calculated in Table 10.7. 

 

Table 10.6: An exemplary set of rules 

ID Rule 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 

4 {𝑋1! = 0, 𝑋2 = 0,𝑋3 = 1 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 

 

Table 10.7: Interaction patterns extracted from the rules in Table 5 and 

their supports 

Variable-value pairs (interaction patterns) Support 

𝑋1 = 0 1/4 

𝑋1! = 0 3/4 

𝑋2 = 0 1/4 

𝑋3 = 1 1/4 

𝑋1! = 0, 𝑋2 = 0 2/4 

𝑋1! = 0, 𝑋2! = 0 1/4 

𝑋1! = 0, 𝑋2 = 0, 𝑋3 = 1 1/4 

 

Hence, the most frequent interactions are 𝑋1! = 0 and 𝑋1! = 0, 𝑋2 = 0. 

Now consider the right hand of each interaction. The confidence is defined 

as the accuracy of an interaction pattern predicting a particular class. For 

example, continuing the example mentioned above, the confidence of the 

interactions can be calculated as shown in Table 10.8. 

Table 10.8: Interaction patterns extracted from the rules in Table 10.6 and 

their confidences 
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Variable-value pairs (interaction patterns) Class Confidence 

𝑋1 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 1/1 

𝑋1! = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 2/3 

𝑋2 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/1 

𝑋3 = 1 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/4 

𝑋1! = 0, 𝑋2 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 2/2 

𝑋1! = 0, 𝑋2! = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 1/1 

𝑋1! = 0, 𝑋2 = 0, 𝑋3 = 1 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/1 

 

Combine both Tables, we can see the top variable interactions in terms 

of confidence and support is  

{𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}. 

with a support of 0.5 and confidence of 1. This indicates this variable 

interaction plays an important role in the tree ensemble. 

Note that, for continuous features, it may be useful to do a discretization 

before inputting the data into inTrees. This is because that there can be many 

possible splitting points for continuous features in a tree, resulting in the 

possibility that fewer frequent variable interactions for continuous features 

could be identified.  

Summarize rules: Once rules from tree ensembles are pruned and 

selected, we can summarize these high-quality rules into classifiers. There are 

multiple methods for summarizing. For example, the method RuleFit1 used 

a linear model for summarizing the rules. Here, we introduce a simple 

method to summarize the rules into an ordered rule set for prediction.  

The method has multiple iterations. Denote 𝑟0 as the default rule (i.e., 

with null condition) that classifies all data points to the most frequent class. 

Denote the ordered rule set as 𝑅, which is set to be empty at the beginning. 

                                                      
1 Friedman, J.H. and Popescu, B.E. Predictive learning via rule ensembles. Annals of applied 

statistics, 2008. 
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Then, at each iteration, the best rule in the rule set is selected and added to 

𝑅. The best rule is defined as the rule with the minimum error evaluated by 

the training data. If there are ties, the rule with higher frequency and smaller 

length is selected. Then, the data points that satisfy the condition of the best 

rule are removed, and the default rule 𝑟0 is re-calculated with the data points 

left. This iterative process continues until no instance is left in the training 

dataset, or the default rule 𝑟0 has the best accuracy comparing with other 

rules in the remaining rule set. Note that, the selected rules in 𝑅 are ordered 

according to the sequence of their inclusion. 

Consider the dataset shown in Table 1 and the rule set shown in Table 4. 

At the beginning, the default rule is {𝐶𝑙𝑎𝑠𝑠 = 𝐶0} with error rate of 3/7. The 

error rate and frequency of each rule is shown in Table 10.9.  

  

Table 10.9: Error rates and frequencies of the rules in Table 10.5 using 

dataset in Table 10.1 

ID Rule Error Frequency 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/7 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 0/1 1/7 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 0/1 1/7 

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 3/7  

 

 

In this case, Rule 1 and Rule 2 have the least errors, and their frequency 

and length are also the same. Thus, we can select either of them to the 

ordered rule set 𝑅 = {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} . Then, the data 

point (ID:2) classified by this rule is removed. The default rule is still 

{𝐶𝑙𝑎𝑠𝑠 = 𝐶0}, and the error and frequency of each rule on the new dataset 

is updated in Table 10.10.  
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Table 10.10: Updated error rates and frequencies of the rules in Table 10.5 

using the reduced dataset in Table 10.1 (data point ID:2 is removed) 

ID Rule Error Frequency 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/6 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} NA 0/6 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 0/1 1/6 

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 2/6  

 

Table 10.11: Updated error rates and frequencies of the rules in Table 4 

using the reduced dataset in Table 1 (data points ID:1 and ID:2 are 

removed) 

ID Rule Error Frequency 

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/5 

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} NA 0/5 

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} NA 0/5 

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 2/5  

 

 

Table 10.12: Final results of 𝑅 

Order Rule 

1 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 

2 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 

3 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 

 

Then, {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}  is added to 𝑅 , and the data 

point (ID:1) is removed. The default rule remains unchanged and the error 

and frequency of each rule on the new dataset is updated in Table 10.11. 
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Now the default rule 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 has the minimum error 2/5, the same 

as {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}. Therefore, the default rule is added to 𝑅 and 

the process stops.  The final ordered rule set 𝑅 is summarized in Table 10.12. 

When predicting on an instance, the first rule in 𝑅 satisfying the data 

point is used for prediction. For example, for a data point {𝑋1 = 0,𝑋2 = 1}, 

it does not satisfy neither Rule 1 or Rule 2 in 𝑅. Therefore, the default rule is 

used, and the prediction is 𝐶0.  

 

II.3 R Lab 

Here we apply random forests to the AD dataset and use inTrees to 

extract rules. First, based on the random forest model, 4555 rules are 

extracted.  

rm(list = ls(all = TRUE)) 
library("arules") 
library("randomForest") 
library("RRF") 
library("inTrees") 
library("reshape") 
library("ggplot2") 
set.seed(1) 
path <- "../../data/AD_bl.csv" 
data <- read.csv(path, header = TRUE) 
 
target_indx <- which(colnames(data) == "DX_bl") 
target <- paste0("class_", as.character(data[, target_indx])) 
rm_indx <- which(colnames(data) %in% c("DX_bl", "ID", "TOTAL13", 
"MMSCORE")) 
X <- data 
X <- X[, -rm_indx] 
for (i in 1:ncol(X)) X[, i] <- as.factor(dicretizeVector(X[, i], 
K = 3)) 
 
rf <- randomForest(X, as.factor(target)) 
 
treeList <- RF2List(rf)  # transform rf object to an inTrees' for
mat 
exec <- extractRules(treeList, X)  # R-executable conditions 

## 4555 rules (length<=6) were extracted from the first 100 tree
s. 
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Next, the rules are measured by length, error and frequency. E.g., the 

statistics of 5 rules are shown in the graph below.  

class <- paste0("class_", as.character(target)) 
rules <- getRuleMetric(exec, X, target) 
print(rules[order(as.numeric(rules[, "len"])), ][1:5, ]) 

##      len freq    err     condition                                  
## [1,] "2" "0.118" "0.098" "X[,6] %in% c('L1') & X[,11] %in% c('L1')" 
## [2,] "2" "0.182" "0"     "X[,4] %in% c('L1') & X[,6] %in% c('L1')"  
## [3,] "2" "0.182" "0"     "X[,4] %in% c('L1') & X[,6] %in% c('L1')"  
## [4,] "2" "0.081" "0.024" "X[,3] %in% c('L3') & X[,4] %in% c('L3')"  
## [5,] "2" "0.043" "0.136" "X[,6] %in% c('L3') & X[,7] %in% c('L3')"  
##      pred      
## [1,] "class_1" 
## [2,] "class_1" 
## [3,] "class_1" 
## [4,] "class_0" 
## [5,] "class_0" 

For rule pruning, first, we try with absolute decay using a threshold of 

0.005 (maxDecay = 0.005) to prune the rules, that is, a variable-pair is not 

removed if the decay is larger than 0.005. The statistics of the rules before 

and after pruning are shown in Figures 4-6. 

 

 

Figure 10.4: Histogram of lengths of the rules before and after the pruning  
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The R code below generates Figure 10.4. 

 
rules.pruned <- pruneRule(rules, X, target, maxDecay = 0.005, typ
eDecay = 2) 
 
length <- data.frame(original = as.numeric(rules[, "len"]), prune
d = as.numeric(rules.pruned[,  
    "len"])) 
ggplot(melt(length), aes(value, fill = variable)) + geom_histogra
m(position = "dodge",  
    binwidth = 0.4) + ggtitle("Histogram of Lengths") + theme(plo
t.title = element_text(hjust = 0.5)) 

 

 

 

Figure 10.5: Histogram of frequencies of the rules before and after the 

pruning  

 

The R code below generates Figure 10.5. 

frequency <- data.frame(original = as.numeric(rules[, "freq"]), p
runed = as.numeric(rules.pruned[,  
    "freq"])) 
ggplot(melt(frequency), aes(value, fill = variable)) + geom_histo
gram(position = "dodge",  
    binwidth = 0.05) + ggtitle("Histogram of Frequencies") + them
e(plot.title = element_text(hjust = 0.5)) 
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The R code below generates Figure 10.6. 

error <- data.frame(original = as.numeric(rules[, "err"]), pruned
 = as.numeric(rules.pruned[,  
    "err"])) 
ggplot(melt(error), aes(value, fill = variable)) + geom_histogram
(position = "dodge",  
    binwidth = 0.01) + ggtitle("Histogram of Errors") + theme(plo
t.title = element_text(hjust = 0.5)) 

 

 

Figure 10.6: Histogram of errors of the rules before and after the pruning  

 

It can be seen that, the lengths of rules are substantially reduced. For 

example, a majority of the original rules have length of 6 (as the default max 

length is set to be 6), while after pruning, only a slight percentage of the rules 

have length of 6. Also, since rules are shortened, the reduction of frequencies 

are also significant. In terms of errors, after pruning, the error distribution 

has shifted to the left. Therefore, the rules are simplified without significant 

sacrifice of accuracy. 

For a comparison, we conduct one more experiment using the relative 

decay with a threshold of 0.05 (maxDecay = 0.05). Results are shown in 

Figures 7-9. 
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Figure 10.7: Histogram of lengths of the rules before and after the pruning  

 

 

Figure 10.8: Histogram of frequenties of the rules before and after the 

pruning  

 

The R code below generates Figure 10.7. 

rules.pruned <- pruneRule(rules, X, target, maxDecay = 0.05, type
Decay = 1) 
 
length <- data.frame(original = as.numeric(rules[, "len"]), prune
d = as.numeric(rules.pruned[,  
    "len"])) 
ggplot(melt(length), aes(value, fill = variable)) + geom_histogra
m(position = "dodge",  
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    binwidth = 0.4) + ggtitle("Histogram of Lengths") + theme(plo
t.title = element_text(hjust = 0.5)) 

The R code below generates Figure 10.8. 

frequency <- data.frame(original = as.numeric(rules[, "freq"]), p
runed = as.numeric(rules.pruned[,  
    "freq"])) 
ggplot(melt(frequency), aes(value, fill = variable)) + geom_histo
gram(position = "dodge",  
    binwidth = 0.05) + ggtitle("Histogram of Frequencies") + them
e(plot.title = element_text(hjust = 0.5)) 

The R code below generates Figure 10.9. 

error <- data.frame(original = as.numeric(rules[, "err"]), pruned
 = as.numeric(rules.pruned[,  
    "err"])) 
ggplot(melt(error), aes(value, fill = variable)) + geom_histogram
(position = "dodge",  
    binwidth = 0.01) + ggtitle("Histogram of Errors") + theme(plo
t.title = element_text(hjust = 0.5)) 

 

Figure 10.9: Histogram of errors of the rules before and after the pruning  

The changes of lengths, frequencies and errors, look similar to the 

previous results using the absolute decay. An advantage of using relative 

decay is that one does not need to know the baseline error of a dataset. 

However, relative decay depends on the baseline error of each original rule, 
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and when the baseline error is small, e.g., 0, the relative error increase can be 

large even if the absolute error increase is small.  

Now let’s consider rule selection. The following R codes applies rule 

selection to the pruned rule set.  

rules.selected <- selectRuleRRF(rules.pruned, X, target) 
rules.present <- presentRules(rules.selected, colnames(X)) 
print(cbind(ID = 1:nrow(rules.present), rules.present[, c("condit
ion", "pred")])) 

After selection, only 16 rules are selected.  

##       ID   
##  [1,] "1"  
##  [2,] "2"  
##  [3,] "3"  
##  [4,] "4"  
##  [5,] "5"  
##  [6,] "6"  
##  [7,] "7"  
##  [8,] "8"  
##  [9,] "9"  
## [10,] "10" 
## [11,] "11" 
## [12,] "12" 
## [13,] "13" 
## [14,] "14" 
## [15,] "15" 
## [16,] "16" 
##       condition                                               
                                                                 
#  [1,] "FDG %in% c('L1','L2') & HippoNV %in% c('L1')"           
                                                                
#  [2,] "FDG %in% c('L1') & HippoNV %in% c('L1','L2')"           
                                                                
#  [3,] "PTGENDER %in% c('L2') & FDG %in% c('L2') & AV45 %in% c('
L1','L2') & rs3818361 %in% c('L2') & rs3851179 %in% c('L2')"    
#  [4,] "AGE %in% c('L3') & FDG %in% c('L1') & HippoNV %in% c('L1
','L2')"                                                        
#  [5,] "PTEDUCAT %in% c('L1') & AV45 %in% c('L2') & HippoNV %in%
 c('L2') & rs610932 %in% c('L2')"                               
#  [6,] "HippoNV %in% c('L1') & rs3818361 %in% c('L1')"          
                                                                
#  [7,] "AV45 %in% c('L3') & HippoNV %in% c('L1','L2')  
#  [8,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2') && rs37646
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50 %in% c('L1')"                             
#  [9,] "AGE %in% c('L1') & PTGENDER %in% c('L2') & FDG %in% c('L
2') & AV45 %in% c('L1','L2') & HippoNV %in% c('L1')"            
# [10,] "AGE %in% c('L3') & PTGENDER %in% c('L1') & PTEDUCAT %in%
 c('L2') & AV45 %in% c('L1','L2')"                              
# [11,] "AGE %in% c('L2') & PTEDUCAT %in% c('L2','L3') & HippoNV 
 %in% c('L2','L3') & e4_1 %in% c('L2')" 
# [12,] "AGE %in% c('L2') & PTEDUCAT %in% c('L3') & e4_1 %in% c('
L1')"                                                           
# [13,] "PTEDUCAT %in% c('L1','L3') & e4_1 %in% c('L1') & rs11136
000 %in% c('L1') & rs610932 %in% c('L1')"                       
# [14,] "AGE %in% c('L2') & HippoNV %in% c('L2','L3') & rs3865444
 %in% c('L1')"                                                  
# [15,] "AGE %in% c('L1','L2') & AV45 %in% c('L1')"               
# [16,] "PTEDUCAT %in% c('L1','L3') & FDG %in% c('L2','L3') & Hip
poNV %in% c('L2','L3')"                                         
 

##       pred      
##  [1,] "class_1" 
##  [2,] "class_1" 
##  [3,] "class_0" 
##  [4,] "class_1" 
##  [5,] "class_1" 
##  [6,] "class_1" 
##  [7,] "class_1" 
##  [8,] "class_0" 
##  [9,] "class_0" 
## [10,] "class_0" 
## [11,] "class_0" 
## [12,] "class_0" 
## [13,] "class_0" 
## [14,] "class_0" 
## [15,] "class_0" 
## [16,] "class_0" 

print(cbind(ID = 1:nrow(rules.present), rules.present[, c("len", 
"freq", "err")])) 

##       ID   len freq    err     
##  [1,] "1"  "2" "0.279" "0.083" 
##  [2,] "2"  "2" "0.279" "0.09"  
##  [3,] "3"  "5" "0.029" "0.133" 
##  [4,] "4"  "3" "0.122" "0.016" 
##  [5,] "5"  "4" "0.031" "0.312" 
##  [6,] "6"  "2" "0.207" "0.121" 
##  [7,] "7"  "3" "0.172" "0.124" 



 

Analytics of Small Data 

325 
 

##  [8,] "8"  "4" "0.06"  "0.194" 
##  [9,] "9"  "5" "0.006" "0"     
## [10,] "10" "4" "0.044" "0.13"  
## [11,] "11" "5" "0.019" "0.2"   
## [12,] "12" "3" "0.043" "0.182" 
## [13,] "13" "4" "0.037" "0.158" 
## [14,] "14" "3" "0.114" "0.203" 
## [15,] "15" "2" "0.234" "0.215" 
## [16,] "16" "3" "0.282" "0.144" 

Now let’s extract the frequent variable interactions by the function 

getFreqPattern(). Here, we discretize the continuous features to 3 levels 

with equal frequency.  

freqPattern <- getFreqPattern(rules.pruned) 

top.pattern <- (freqPattern[which(as.numeric(freqPattern[, "len
"]) >= 2), ][1:5, ]) 
print(presentRules(top.pattern, colnames(X))) 

And the top frequency variable interactions (with length greater than 2) 

are shown below. 

##      len sup     conf    
## [1,] "2" "0.038" "1"     
## [2,] "2" "0.026" "1"     
## [3,] "2" "0.023" "0.991" 
## [4,] "2" "0.022" "0.953" 
## [5,] "2" "0.021" "0.99"  
##      condition                                                
  
## [1,] "FDG %in% c('L2','L3') & HippoNV %in% c('L2','L3')"   
## [2,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2','L3')"  
## [3,] "HippoNV %in% c('L1') & rs3818361 %in% c('L1')"       
## [4,] "AV45 %in% c('L3') & HippoNV %in% c('L1')"            
## [5,] "rs610932 %in% c('L1') & HippoNV %in% c('L2','L3')"   

##       pred      
##  [1,] "class_0" 
##  [2,] "class_0" 
##  [3,] "class_1" 
##  [4,] "class_1" 
##  [5,] "class_0" 
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An ordered rule set can be built using the selected rules by the function 

buildLearner().  

learner <- buildLearner(rules.selected, X, target) 
learner.readable <- presentRules(learner, colnames(X)) 
print(cbind(ID = 1:nrow(learner.readable), learner.readable[, c("
condition", "pred")])) 

##       ID   
##  [1,] "1"  
##  [2,] "2"  
##  [3,] "3"  
##  [4,] "4"  
##  [5,] "5"  
##  [6,] "6"  
##  [7,] "7"  
##  [8,] "8"  
##  [9,] "9"  
## [10,] "10" 
## [11,] "11" 
## [12,] "12" 
##       condition                                               
                                                              
#  [1,] "AGE %in% c('L3') & FDG %in% c('L1') & HippoNV %in% c('L1
','L2')"                                                     
#  [2,] "FDG %in% c('L1','L2') & HippoNV %in% c('L1')"           
#  [3,] "AGE %in% c('L2') & PTEDUCAT %in% c('L3') & e4_1 %in% c('
L1')"                                                        
#  [4,] "PTEDUCAT %in% c('L1','L3') & e4_1 %in% c('L1') & rs11136
000 %in% c('L1') & rs610932 %in% c('L1')"                    
#  [5,] "AGE %in% c('L3') & PTGENDER %in% c('L1') & AV45 %in% c('
L1','L2')"                           
#  [6,] "PTGENDER %in% c('L2') & FDG %in% c('L2') & AV45 %in% c('
L1','L2') & rs3818361 %in% c('L2') & rs3851179 %in% c('L2')" 
#  [7,] "PTEDUCAT %in% c('L1','L3') & FDG %in% c('L2','L3') & Hip
poNV %in% c('L2','L3')"                                      
#  [8,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2') & & rs3764
650 %in% c('L1')"                          
#  [9,] "FDG %in% c('L1') & HippoNV %in% c('L1','L2')"           
# [10,] "AGE %in% c('L2') & HippoNV %in% c('L2','L3') & rs3865444
 %in% c('L1')"                                               
# [11,] "AGE %in% c('L1','L2') & AV45 %in% c('L1')"              
# [12,] "Else"                                                   
                                                             
##       pred      
##  [1,] "class_1" 
##  [2,] "class_1" 
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##  [3,] "class_0" 
##  [4,] "class_0" 
##  [5,] "class_0" 
##  [6,] "class_0" 
##  [7,] "class_0" 
##  [8,] "class_0" 
##  [9,] "class_1" 
## [10,] "class_0" 
## [11,] "class_0" 
## [12,] "class_0" 

print(cbind(ID = 1:nrow(learner.readable), learner.readable[, c("
len", "freq", "err")])) 

##       ID   len freq                 err                  
##  [1,] "1"  "3" "0.121856866537718"  "0.0158730158730159" 
##  [2,] "2"  "2" "0.195357833655706"  "0.118811881188119"  
##  [3,] "3"  "3" "0.034816247582205"  "0.0555555555555556" 
##  [4,] "4"  "4" "0.02321083172147"   "0.0833333333333334" 
##  [5,] "5"  "4" "0.0367504835589942" "0.105263157894737"  
##  [6,] "6"  "5" "0.0154738878143133" "0.125"              
##  [7,] "7"  "3" "0.2321083172147"    "0.158333333333333"  
##  [8,] "8"  "4" "0.0212765957446809" "0.181818181818182"  
##  [9,] "9"  "2" "0.0328820116054159" "0.0588235294117647" 
## [10,] "10" "3" "0.0425531914893617" "0.181818181818182"  
## [11,] "11" "2" "0.0851063829787234" "0.204545454545455"  
## [12,] "12" "1" "0.158607350096712"  "0.317073170731707" 

 

IV. Exercises 

Data analysis 

1. Find 10 regression datasets from the UCI data repository or R 

datasets. Use inTrees to do analysis. Identify the final list of rules.  

 

Programming  

2. Simulate a dataset that has 10 variables, and design some interactions 

among the 10 variables (the form of the interactions is open-ended, 

e.g., it could be rule-based interactions, or any other statistical 

interactions). You can learn more from the simulation study in this 
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paper1 to help you conduct this simulation. Implement inTrees to 

see if the interactions can be captured. 

3. Increase the number of variables to be 100. Make the interaction 

patterns sparse, e.g., only 20 variable interactions. Implement 

inTrees to see if the interactions can be captured. 

 

 

 

 

 

 

                                                      
1 Friedman, J.H. and Popescu, B.E. Predictive learning via rule ensembles. Annals of applied 

statistics, 2008. 
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CONCLUSION  
 

 

 

 

Not to play devil’s advocate, this book is named as analytics of small data 

for a reason. It doesn’t mean that the methods introduced in this book could 

only be applied to small datasets. Rather, it is the approach of this book to 

introduce analytics methods through exemplary datasets as small as possible, 

small enough that we could grasp with perception or intuition, whatever 

readily accessible to us. Then, we illustrate what questions we could ask and 

what types of models we can build based on these small datasets. In this way, 

we hope to connect perceivable intuition with abstract formulations. We 

hope this endeavor is achieved by this book. 

We also feel that we own an explanation of the cover image. It is a 

computer running statistical analysis using R, which is connected with a 3D 

printer in production. The computer analyzes the real-time measurements 

obtained from the 3D printer and generates results for the 3D printer such 

that the 3D printer can adjust its real-time production. This is what is 

happening in real world. The point we’d like to convey is, data analytics is 
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not just some cyber activities. Its impact is not confined in office. It is actually 

the brain device in many production systems and online operations such as 

search engines. Its application is everywhere.  

In writing this book, we owe great debts to many people who generously 

share their materials and codes online. In online communities such as GitHub 

and stackoverflow, you can find many free resources which can launch you 

into a fast track of developing a project. Many insightful notes and technical 

reports have been posted online. And nowadays researchers post their latest 

results on arXiv.org so we could save much time without waiting for the 

manuscript to go through the entire publication period that could be lengthy. 

Of course, as students of our pioneers and servants of our discipline, our 

greatest gratitude goes to our pioneers who have made solid contributions in 

areas such as statistics, machine learning, and optimization, enabling us to 

use the data analytics tools. As human beings, we are special fishes who are 

aware of the water.  

To conclude this book, notice that much efforts of this book are devoted 

to show the development process of a technique that starts with a seed idea 

and ends with the technique that can be used. Such development processes 

are shown intuitively as much as we could. Also, in terms of completeness, 

we more focus on completeness in the development process instead of topics. 

There is an impression that that academic research is full of jargons, thus 

translational efforts are needed. We aim to provide a framework to 

consolidate our common sense with those jargons, particularly, the scientific 

considerations beyond those jargons, so readers can develop access to the 

wonderful resources available to us, made free by academic researchers, to 

implement data analytics for real-world problems. In dealing with reality, it is 

essentially performance and practice. In theory we speculate about reality, in 

reality we apply theories and reflect upon theories. At any rate, the mode of 

speculation of our mind is, as we believe, one essential faculty for us to learn 

and make decisions. Thus, this book, through a mode of speculation in 

introducing both theory and practice, aims to foster this capacity of 
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speculation and help us to come to terms with what is given (as our data), 

help us to be critical, while not dismissive.


