

A N A L Y T I C S O F
S M A L L D A T A

- A MODE OF THINKING

Shuai Huang & Houtao Deng

Contents

PREFACE .. 9

CHAPTER 1: INTRODUCTION ..12

Overview of a Data Analytics Pipeline ..12

Structure of the Chapters ...13

Topics in a Nutshell ..14

CHAPTER 2: ABSTRACTION ..16

II. Regression Models ..18

III. Tree Models ...42

CHAPTER 3: RECOGNITION ...61

II. Logistic Regression Model ...62

III. A Product Ranking Problem by Pairwise Comparison ..75

CHAPTER 4: COMPUTATION ..80

II. How Bootstrap Works ..81

III. Random Forests ..95

CHAPTER 5: PERFORMANCE ... 113

Analytics of Small Data

5

II. Cross-Validation .. 116

III. Out-of-bag error in Random Forest .. 134

CHAPTER 6: DIAGNOSIS .. 142

II. Residual Analysis in Regression .. 143

III. Diagnosis in Random Forests ... 152

IV. Clustering ... 161

CHAPTER 7: BALANCE .. 173

II. Support Vector Machine .. 173

III. Ensemble Learning ... 199

CHAPTER 8: SCALABILITY .. 218

II. LASSO ... 219

III. Principal Component Analysis .. 237

IV. Variable Selection by Random Forests .. 247

CHAPTER 9: CRAFTSMANSHIP .. 267

II. Kernel Regression Model ... 267

III. Conditional Variance Regression Model .. 275

IV. System Monitoring as a Decision Tree Model .. 284

CHAPTER 10: SYNTHESIS ... 303

II. InTrees ... 304

CONCLUSION ... 329

PREFACE

Students come to a classroom for knowledge. This is true, but we feel

something is missing. Knowledge as we know is written and circulated. But,

still, we feel a gap between us with knowledge, for there is always something

in life that reminds us what we don’t know about what we know. To fill in

the gap, we probably need that something we call as confidence. Thus,

students come to a classroom not only just for knowledge, but also for

confidence on knowledge. For the later aim, we need to comment on the

workshop of the creation of knowledge. And the workshop revealed by one

teacher is not necessary the same as the workshop revealed by another, as we

can only retrospectively speculate what would have happened when our

pioneers discovered the knowledge. Doing this kind of speculation is helpful,

since it may enhance our faculty of critical thinking, capacity of learning

theory, and commitment on practice.

Thus, this book is not just a book of techniques. Rather, it is a book about

techniques, about the workshops of researchers who work in the frontier of

our academic area. Techniques are used for answering certain questions or

meeting certain needs. This seems to be obvious. While less obvious is that,

techniques give a structure for what kinds of questions we can formulate in

10

practice. Giving a structure is at the same time giving a limited scope, and

thus, only certain types of structured questions can be formulated. For

example, thinking of hypothesis testing, which first proposes a null

hypothesis, then seeks evidence from the data to reject the null hypothesis.

In this classic setting of hypothesis testing, “accepting” the hypothesis is not

a valid option. This is the structured way to ask questions in a certain way.

The structure is its strength, also its limitation.

This is probably why it is often we see new comers in many areas find it

is hard to ask the right questions. It is because that professionals in these

areas have been educated with the mindset of asking the type of questions

their techniques enable them to ask. This also means that knowing how the

techniques work is very important. There are many books about data

analytics techniques, so in this book, we discuss what principles we can use

to invent these techniques, what assumptions are made, how mathematics is

used to articulate these assumptions, and how these lead to neat formulations

that generalize a wide range of real-world applications into generic and

abstract forms. This makes us scientists. Meanwhile, as analytics is a practical

area, we also need to develop engineer’s Craftsmanship. This means

computational competency, programming skills, experiences, and insights

that we can gain by practice. Not blind practice, but the type of practice

informed by theory and can be used to reflect on theory retrospectively.

Thus, the style of the book highlights a combination of technical

concreteness and holistic thinking. As you could see, the Chapters are named

as different qualities of holistic thinking in decision-makings, including

“Abstraction”, “Recognition”, “Computation”, “Performance”, “Diagnosis”,

“Balance”, “Scalability”, “Craftsmanship”, and “Synthesis”. It is true in

nowadays “technology rules” environment, holistic thinking seems to be

neglected. But one can find so many examples to show that in real-world

great decisions are made by someone who can articulate both panels’

strengths, as both are indispensable qualities for solving real-world problems.

Holistic thinking is the foundation of how we formulate problems and how

we could trust our formulations, as our formulations inevitably are only

Analytics of Small Data

11

biased and partial representation of the complex real-world problems.

Holistic thinking is also the foundation of communication between team

members of different backgrounds. With a diverse team, things that make

sense intuitively will be very important to build team-wide trust in decision-

makings.

This book is a collaborative work between two authors who both made

substantial efforts. Particularly, Shuai focuses on the regression-based

methods while Houtao focuses on the tree-based methods. Although these

two types of methods represent two distinct cultures in statistical modeling,

we have found many common considerations and principles underlying both

cultures. Thus, we hope that a juxtaposition of both methods could help

develop a unified picture of many existing data analytics tools.

Last words to conclude the preface. The purpose of this book is not to

encourage dismissal of the rigorous underpinnings of statistics and data

analytics. Rather, we hope to help readers develop a critical attitude about

techniques, while this critical attitude can only be enabled and maintained by

a deep appreciation of the rigorous underpinnings of statistics and data

analytics. You probably have heard of the saying that “technology is good

when it works”. Technologies are cameras, which we can use to capture great

moments in life; while on the other hand, they are also filters of life and only

capture some of it. It is our hope that, after reading this book, you can use

them to capture some truth of life.

12

CHAPTER 1: INTRODUCTION

Overview of a Data Analytics Pipeline

A typical data analytics pipeline consists of several major pillars. In the

example shown in Figure 1.1, it has four pillars: sensor and devices, data

preprocessing and feature engineering, feature selection and dimension

reduction, modeling and data analysis. While this is not the only way to

present the diverse data pipelines in real-world, they more or less resemble

this architecture.

Figure 1.1: Overview of a data analytics pipeline

Analytics of Small Data

13

The pipeline starts with a real-world problem, for which we are not sure

about the underlying system/mechanism, but we are able to characterize the

system by defining some variables. Then, we could develop sensors and

devices to acquire measurements of these variables. These measurements, we

call as data, are objective evidences that we can use to explore the statistical

principles or mechanistic laws regulating the system behaviors. But, before

analyzing the data and building models using the data, in practice, the data

preprocessing and feature engineering are important. For example, some

signals acquired by sensors are not interpretable or not easily compatible with

human sense, such as the signal acquired by MRI scanning machines in the

Fourier space. Data preprocessing also refers to removal of outliers or

imputation of missing data, detection and removal of redundant features, to

name a few. After the preprocessing, we may conduct feature selection and

dimension reduction to distill or condense signals in the data and reduce

noise. Finally, we are ready to conduct modeling and data analysis on the

prepared dataset to gain knowledge and build prediction models of the real-

world system. Decision-makings such as prediction, intervention, and control

policies can be derived based on the fitted models to optimize and control

the real-world system.

This book focuses on the last two pillars of this pipeline, the modeling,

data analysis, feature selection, and dimension reduction methods. But it is

helpful to keep in mind of the big picture of a data analytics pipeline. Because

in practice, what works is the whole pipeline.

Structure of the Chapters

The structures of the Chapters follow the same manner.

 Each chapter will introduce two or three techniques. In most cases,

one technique is about regression model while another one is about

tree model.

 For each technique, we will highlight the intuition and rationale

behind it.

14

 Then, we articulate the intuition, use math to formulate the learning

problem, and present the full version of the analytic formulation. But,

it is always important to remember its intuitive underpinning.

 Then, we use R to implement the technique on both simulated and

real-world dataset, present the analysis process (together with R

code), show the dynamics in the analysis process, and comment on

the results.

 Some remarks are also made to enhance understanding of the

techniques, reveal their different natures by other perspectives,

reveal their limitations, and mention existing remedies to overcome

these limitations.

Topics in a Nutshell

Data models – regression based techniques:

 Chapter 2: Linear regression, least-square estimation, hypothesis
testing, why normal distribution, its connection with experimental
design, R-squared.

 Chapter 3: Logistic regression, generalized least square estimation,
iterative reweighted least square (IRLS) algorithm, approximated
hypothesis testing, Ranking as a linear regression

 Chapter 4: Bootstrap, data resampling, nonparametric hypothesis
testing, nonparametric confidence interval estimation

 Chapter 5: Overfitting and underfitting, limitation of R-squared,
training dataset and testing dataset, random sampling, K-fold cross
validation, the confusion matrix, false positive and false negative,
and Receiver Operating Characteristics (ROC) curve

 Chapter 6: Residual analysis, normal Q-Q plot, Cook’s distance,
leverage, multicollinearity, subset selection, heterogeneity, clustering,
Gaussian mixture model (GMM), and the Expectation-
Maximization (EM) algorithm

 Chapter 7: Support Vector Machine (SVM), generalize data versus
memorize data, maximum margin, support vectors, model
complexity and regularization, primal-dual formulation, quadratic
programming, KKT condition, kernel trick, kernel machines, SVM
as a neural network model

Analytics of Small Data

15

 Chapter 8: LASSO, sparse learning, L1-norm and L2-norm
regularization, Ridge regression, feature selection, shooting
algorithm, Principal Component Analysis (PCA), eigenvalue
decomposition, scree plot

 Chapter 9: Kernel regression as generalization of linear regression
model, kernel functions, local smoother regression model, k-nearest
regression model, conditional variance regression model,
heteroscedasticity, weighted least square estimation, model
extension and stacking

Algorithmic models – tree based techniques:

 Chapter 2: Decision tree, entropy gain, node splitting, pre- and post-
pruning, empirical error, generalization error, pessimistic error by
binomial approximation, greedy recursive splitting

 Chapter 4: Random forest, Gini index, weak classifiers, probabilistic
mechanism why random forest works

 Chapter 5: Out-of-bag (OOB) error in random forest

 Chapter 6: Importance score, partial dependency plot, residual
analysis

 Chapter 7: Ensemble learning, Adaboost, sampling with (or without)
replacement

 Chapter 8: Importance score in random forest, regularized random
forests (RRF), guided regularized random forests (GRRF)

 Chapter 9: System monitoring reformulated as classification, real-
time contrasts method (RTC), design of monitoring statistics, sliding
window, anomaly detection, false alarm

 Chapter 10: Integration of tree models, feature selection, and
regression models in inTrees, random forest as a rule generator, rule
extraction, pruning, selection, and summarization, confidence and
support of rules, variable interactions, rule-based prediction

In this book, we will use lower-case letters, e.g., 𝑥, to represent scalars, bold-

face lower-case letters, e.g., 𝒗, to represent vectors, and bold-face upper-case

letters, e.g., 𝑾, to represent matrices.

16

CHAPTER 2: ABSTRACTION
REGRESSION and TREE MODELS

I. Overview

Chapter 2 is about “Abstraction”. It concerns how we model and

formulate a problem using specific mathematical models. Abstraction is powerful.

With identification of a few main entities (usually called as variables or

features) from the problem, and characterization of their relationships, we

can free ourselves from the application context and focus on the study of

these interconnected entities as a pure mathematical system. Consequences

can be analytically (rather than speculatively) established within this

abstracted framework, while phenomenon in the context could be identified

as special instances of this abstracted model.

Generally, there are two main types of cultures for statistical modeling.

Prof. Leo Brienman made these two cultures explicit as he articulated in his

seminar paper1. One is the “data modeling” culture, while another one is the

“algorithmic modeling” culture. In this book, we will focus on two models

1 Leo Breiman, Statistical Modeling: The Two Cultures. Statistical Science, 2001.

Analytics of Small Data

17

that are representative of each culture: the linear regression models (data

modeling) and decision tree models (algorithmic modeling). Linear regression

is a great example about statistics-driven considerations in modeling, while

decision tree is a great example about computational- and nonparametric-

driven considerations in modeling.

Many real-world problems usually present themselves in the form as a

mystery, as highlighted as a blackbox in Figure 2.1. In these problems, there

is usually an output variable (denoted as 𝑦) we care about and want to predict;

meanwhile, to help us better understand the uncertainty of the output

variable, we have other variables which we call as predictors (denoted as 𝑥1,

𝑥2, …, 𝑥𝑝). We know that there are relationships between the predictors and

the output, but these relationships are unknown, due to our lack of

understanding of the system. It is not always plausible or economically

feasible to develop a Newtonian style characterization of the system using

differential equations.

Figure 2.1: The blackbox nature of many data science problems

A common criterion for evaluating the success of any model, no matter

what type of culture it belongs to, is the prediction performance on the

output variable given the input variables. It is fair to say that, almost all the

models in both cultures could be summarized using a generic form:

𝑦 = 𝑓(𝒙) + 𝜖,

where 𝑓(𝒙) reflects the deterministic part of 𝑦 that can be determined by

knowing 𝒙 , and 𝜖 reflects the uncertain part of 𝑦 that could not be

determined by 𝒙 alone. In some texts, 𝑓(𝒙) is also called the model of the

mean structure, i.e., since given any value of 𝒙 we can predict 𝑦 in the sense

of an average; 𝜖 is usually called as the error term, noise term, or residual

18

term. Thus, 𝑓(𝒙) is a function of 𝒙 while 𝜖 is usually a distribution such as

Gaussian distribution with mean as zero.

With this understanding, we could summarize the different principles of

both cultures in designing their belonging models:

Table 2.1: Comparison between two cultures of models

 𝑓(𝑥) 𝜖 “Cosmology”

Data
Modeling

Explicit form
(e.g., linear
regression)

Statistical
distribution

(e.g., Gaussian)

Imply Cause and
effect; articulate

uncertainty

Algorithmic
Modeling

Implicit form
(e.g., tree
model)

Rarely modeled
as structured
uncertainty;

only
acknowledged
as meaningless

noise

Look for
accurate

surrogate for
prediction; to fit
the data rather
than to explain

the data

II. Regression Models

II.1 Rationale and Formulation

Let’s consider a simple regression model, where there is only one

predictor 𝑥 to predict the outcome 𝑦. Linear regression model assumes a

linear form of 𝑓(𝑥), e.g.,

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥,

and a distribution form for 𝜖, e.g.,

𝜖~𝑁(0, 𝜎𝜀
2).

With this model, for any given value of 𝑥, we could predict the value of 𝑦 as

𝛽0 + 𝛽1𝑥. Apparently, a few assumptions have been made:

 There is linear relationship between 𝑥 and 𝑦 . And this linear

relationship remains the same for all the values of 𝑥. This is often

referred as a global relationship between 𝑥 and 𝑦. Sometimes this

assumption of global relationship is too strong, e.g., as shown in the

Analytics of Small Data

19

Figure 2.2 below, in many drug research works, it is found that the

dose (𝑥) is related to the effect of the drug (𝑦) in a varying manner

that depends on the value of 𝑥. But, still, from Figure 2.2 we can also

see that the linear line captures an essential component in the

relationship between 𝑥 and 𝑦 , providing a good statistical

approximation.

Figure 2.2: Complex relationship between dose (𝑥) and drug response (𝑦),

while the linear line also provides a good statistical approximation

 The model suggests a fundamental unpredictability of 𝑦. That is to

say, if 𝑦 is generated by a combination of the signal (the 𝑓(𝑥)) and

the noise (𝜖), we could never predict the noise part. This has at least

two implications. First, we can quantify the predictability of a dataset,

by taking the ratio of
𝜎𝑦
2−𝜎𝜀

2

𝜎𝑦
2 . Here, 𝜎𝑦

2 is the overall variance of the

output regardless of any predictor information. This ratio is named

as R-squared, that ranges from 0 (zero predictability) to 1 (perfect

predictability). Second, the significance of 𝑥 in predicting 𝑦, and the

accuracy of 𝑥 in predicting 𝑦, are two different concepts. A predictor

𝑥 could be inadequate in predicting 𝑦, e.g., the R-squared could be

as low as 0.1, but it still could be statistically significant. This happens

a lot in social science research and education research projects.

20

 The noise is usually modeled as Gaussian distribution, but this

assumption could be relaxed. Violation of the Gaussian assumption

for 𝜀 could be a concern in many applications, but not as severe as

other violations such as outliers in the dataset. Of course, this

assertion is empirical, only mentioned here to guide practices, and

should not be taken as a strict rule.

II. 2 Theory/Method

Parameter Estimation: The regression parameters could be estimated

by the least-square estimation method. A training dataset is collected to

estimate the unknown parameters in the model. The basic idea is, the best

parameters should fit the training data as much as possible. This is illustrated

in Figure 2.3, where two principles to fit a linear regression model are shown.

The vertical offsets shown in the right of Figure 2.3 is the most popular

approach though. Comparing with the perpendicular offsets shown in the

left of Figure 2.3, the vertical offset leads to tractability in analytic forms,

which is thus more preferred.

Figure 2.3: Two principles to fit a linear regression model: (left)

perpendicular offsets; (right) vertical offsets.

Actually, the principle of minimizing vertical offsets leads to the least-

squares estimation of linear regression models. We can exercise the least

Analytics of Small Data

21

squares estimation using the simple regression model. The objective to

determine the optimal line (or equivalently we can say to determine the

optimal regression parameters), based on the principle suggested in the right

one in Figure 2.3, is the sum of the squared of the vertical derivations of the

observed data points from the line. Suppose that we have collected 𝑁 data

points, denoted as, (𝑥𝑛, 𝑦𝑛) for 𝑛 = 1, 2, … ,𝑁.

Then, the sum of the squared of the vertical derivations of the observed

data points from the line is:

𝑙(𝛽0, 𝛽1) = ∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]
2𝑁

𝑛=1 .

To estimate 𝛽0 and 𝛽1 is to minimize this least-square loss function

𝑙(𝛽0, 𝛽1). Thus, we could take derivatives of 𝑙(𝛽0, 𝛽1) regarding the two

parameters and set them to be zero, to derive the estimation equations:

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽0
= −2∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0,

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽1
= −2∑ 𝑥𝑛[𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0.

Putting these into a succinct way, we can derive

[
𝑁 ∑ 𝑥𝑛

𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 ∑ 𝑥𝑛

2𝑁
𝑛=1

] [
𝛽0
𝛽1
] = [

∑ 𝑦𝑛
𝑁
𝑛=1

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

].

Thus, we can solve these two equations and derive the estimator of 𝛽0

and 𝛽1 as

𝛽0 =
(∑ 𝑦𝑛

𝑁
𝑛=1)(∑ 𝑥𝑛

2𝑁
𝑛=1)−(∑ 𝑥𝑛

𝑁
𝑛=1)(∑ 𝑥𝑛𝑦𝑛

𝑁
𝑛=1)

𝑛∑ 𝑥𝑛
2𝑁

𝑛=1 −(∑ 𝑥𝑛
𝑁
𝑛=1)

2 ,

𝛽1 =
∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

∑ 𝑥𝑛
2𝑁

𝑛=1 −𝑁�̅�2
.

While the above mathematical expression seems to be complex, there is

another angle to take a look at it. Notice that the sample correlation between

𝑥 and 𝑦 is:

𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑛−�̅�)
𝑁
𝑛=1 (𝑦𝑛−�̅�)

𝑁−1
=

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

𝑁−1
,

Also, the sample variance is defined as

𝑣𝑎𝑟(𝑥) =
∑ 𝑥𝑛

2𝑁
𝑛=1 −𝑁�̅�2

𝑁−1
.

We can rewrite the estimators of 𝛽0 and 𝛽1 as

22

𝛽0 = 𝑦 − 𝛽1𝑥,

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
.

A simple example: Let’s practice the estimation method using a simple

example. The dataset is shown in Table 2.2:

Table 2.2: An exemplary dataset

𝑋 1 3 3 5 5 6 8 9

𝑌 2 3 5 4 6 5 7 8

The R-code to verify your calculation:

Simple example of regression with one predictor
data = data.frame(rbind(c(1,2),c(3,3),c(3,5),c(5,4),c(5,6),c(6,
5),c(8,7),c(9,8)))
colnames(data) = c("Y","X")
str(data)

lm.YX <- lm(Y ~ X, data = data)
summary(lm.YX)

Extension to multivariate regression model: While this is the case for

a simple regression model, we can extend this experience to a more general

case:

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 + 𝜀.

To fit this multivariate linear regression model, we collect 𝑛 data points,

denoted as

𝒚 = [

𝑦1
𝑦2
⋮
𝑦𝑁

], 𝐗 = [

1 𝑥11 𝑥21 ⋯ 𝑥𝑝1
1 𝑥12 𝑥22 ⋯ 𝑥𝑝2

⋮
1

⋮
𝑥1𝑁

⋮
𝑥2𝑁

⋮
⋯

⋮
𝑥𝑝𝑁

],

where 𝒚 ∈ 𝑅𝑁×1 denotes for the 𝑛 measurements of the response variable,

and 𝐗 ∈ 𝑅𝑁×(𝑝+1) denotes for the design matrix that includes the 𝑁

measurements of the 𝑝 input variables.

Analytics of Small Data

23

Then, the regression model can be rewritten in its matrix form as:

𝒚 = 𝐗𝜷 + 𝜺.

Here, 𝜷 ∈ 𝑅(𝑝+1)×1 denotes for the regression parameters and 𝜺 ∈

𝑅𝑁×1 denotes for the 𝑁 residuals which are assumed to follow a normal

distribution with mean as zero and variance as 𝜎𝜀
2.

 A detailed presentation of them is shown in below:

𝜷 = [

𝛽0
𝛽1
⋮
𝛽𝑝

], and 𝜺 = [

𝜀1
𝜀2
⋮
𝜀𝑁

].

Then, to estimate 𝜷, we can derive the optimization formulation in matrix

form as:

min
𝜷
(𝒀 − 𝐗𝜷)𝑇(𝒀 − 𝐗𝜷),

To solve this optimization problem, we can take the gradient of the

objective function and set it to be zero:

𝜕(𝒀−𝐗𝜷)𝑇(𝒀−𝐗𝜷)

𝜕𝜷
= 0,

which gives rise to the equation:

𝐗𝑇(𝒀 − 𝐗𝜷) = 0.

This leads to the least square estimator of 𝜷 as

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀.

A resemblance can be easily detected between �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀 with

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
 by noticing that 𝐗𝑇𝒀 (corresponds to 𝑐𝑜𝑣(𝑥, 𝑦)) reflects the

correlation between predictors and output, and 𝐗𝑇𝐗 (corresponds to

𝑣𝑎𝑟(𝑥)) reflects the variability of the predictors.

24

Hypothesis testing of regression parameters: It is important to

recognize that, since 𝒚 is a random vector and induce uncertainty, �̂� is a

random vector as well. The mean of �̂� is 𝜷, as

𝐸(�̂�) = 𝐸[(𝐗𝑇𝐗)−1𝐗𝑇𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐸[𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝜷 = 𝜷.

While the covariance matrix of �̂� can be readily derived as

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2(𝐗𝑇𝐗)−1.

This result lays the foundation for developing hypothesis testing of the

regression parameters.

For example, as a typical hypothesis testing question, let’s say, the null

hypothesis is

𝐻0: 𝛽𝑖 = 0.

By theory, it is known that �̂�𝑖~𝑁(𝛽𝑖,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). Thus, if our null hypothesis

is true, then, �̂�𝑖~𝑁(0,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). This gives us the theoretical ground to make

conjecture of what our estimate �̂�𝑖 is “supposed to be”, i.e., as shown below,

�̂�𝑖 is supposed to come from a normal distribution with mean as zero and

variance as
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 (in a specific application,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 can be calculated and take a

specific value):

Figure 2.4: The distribution of �̂�𝑖

Analytics of Small Data

25

Based on this theory, we can see there is clearly a dominance of likelihood

of what kind of �̂�𝑖 we can observe. We could define a range of �̂�𝑖 that we

believe as plausible (i.e., if the null hypothesis is true, then it is normal to see

this value of �̂�𝑖). Note that I use plausible in contrast with possible, since our

theory tells us any value is always possible, but the possibility is not equally

distributed among all the values as shown in the Figure 2.4. Also, our

common sense tells us that some extreme values are always suspicious,

pointing to rare chance. We may define a level of probability that represents

our threshold of rare chance. We coin this threshold level as 𝛼.

Figure 2.5: The framework of hypothesis testing

Now we have almost established the framework of hypothesis testing for

regression parameters. With the threshold level 𝛼, we have made a decision that

we will conclude that any value of �̂�𝑖 that falls into either side of the two

extreme regions is unlikely – if the null hypothesis is true. Thus, if we see

value in either side of the two extreme regions, we will reject the null

hypothesis, since this indicates a strong conflict between theory (things are

supposed to be) and our empirical evidence (as what we observed on �̂�𝑖).

This framework is shown in Figure 2.5.

26

Of course, we are conscious that we make a decision with a risk. We may

be wrong, since even if the null hypothesis is true, there is still a small

probability, 𝛼, that we may observe the �̂�𝑖 falls into either side of the two

extreme regions. But we have accepted this risk. This risk is called the Type

1 Error.

II.3 R Lab

In this section, we illustrate step-by-step R codes to show how the linear

regression model can be used in real-world data analysis. A distinct feature of

this illustration lies on the “real-worldliness” of the data that embodies both

statistical regularities (such that this analysis is enabled and called for) and

realistic irregularities (such that we may recall the famous saying of Prof.

George Box – “all models are wrong, some are useful”). Making informed

decisions by drawing from rigorous theories, while at the same time,

maintaining a critical attitude of theory, should both present simultaneously

in practices of data analytics.

Here, our data is from a study of Alzheimer’s disease that collected

demographics information and some genetic variables from hundreds of

subjects. The goal of this dataset is to use these predictors to predict the score

called Mini-Mental State Examination (MMSCORE) which is a clinical score

(from 0-30) for determining Alzheimer’s disease, i.e., a MMSCORE of 20 to 24

suggests mild dementia, 13 to 20 suggests moderate dementia, and less than

12 indicates severe dementia.

First, let’s load the data into the R workshop:

Example: Alzheimer's Disease
filename
setwd("…/analytics/data")
AD <- read.csv('AD_bl.csv', header = TRUE)
AD$ID = c(1:dim(AD)[1])

It is a nice habit to make detailed documentations of the variables with R

using comments:

Analytics of Small Data

27

Description of variables
ID ID of the subjects
Age Age
PTGENDER Gender
PTEDUCAT Years of education
FDG Average FDG-PET
AV45 Average AV45 SUVR
HippoNV The normalized hippocampus volume
e2_1 Apolipoprotein E4 polymorphism
e4_1 Apolipoprotein E4 polymorphism
rs3818361 CR1 gene rs3818361 polymorphism
rs744373 BIN1 gene rs744373 polymorphism
rs11136000 Clusterin CLU gene rs11136000 polymorphism
rs610932 MS4A6A gene rs610932 polymorphism
rs3851179 PICALM gene rs3851179 polymorphism
rs3764650 ABCA7 gene rs3764650 polymorphism
rs3865444 CD33 gene rs3865444 polymorphism
MMSCORE Mini-mental state examination (outcome variable)
TOTAL13 Alzheimer's Disease Assessment Scale (outcome variable)

After loading the data into the R workshop, we could use the str()

function to give a sketchy overview of the data:

str(AD)

'data.frame': 517 obs. of 5 variables:
$ MMSCORE : int 26 30 30 28 29 30 30 27 28 30 ...
$ AGE : num 71.7 77.7 72.8 69.6 70.9 65.1 79.6 73.6 60.7
 70.6 ...
$ PTGENDER: int 2 1 2 1 1 2 2 2 1 2 ...
$ PTEDUCAT: int 14 18 18 13 13 20 20 18 19 18 ...
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...

First, let’s build a regression model that only uses demographics variables.

Demographics variables are usually the most accessible information of

patients which we can use to build prediction models.

We can create a subset of the dataset as:

subset of variables we want in our first model that only uses d
emographics predictors
AD_demo <- subset(AD, select=c("MMSCORE", "AGE","PTGENDER","PTEDU
CAT","ID"))

28

Before building the model, by the spirit of exploratory data analysis

(EDA)1, we may draw the scatterplots to see how potentially the predictors

can predict the outcome:

ggplot: Plot the scatterplot of the data
install.packages("ggplot2")
library(ggplot2)

p <- ggplot(AD_demo, aes(x = PTEDUCAT, y = MMSCORE))
p <- p + geom_point(size=2)
p <- p + geom_smooth(method = "auto")
p <- p + labs(title="MMSE versus PTEDUCAT")
print(p)

Figure 2.6: Scatterplots of (left) MMSCORE versus AGE and (right) MMSE versus

PTEDUCAT

The scatterplots are shown in Figure 2.6. They show that there are weak

relationships between the predictors with the MMSCORE, while still the

relationship seems to be significant.

Then, we can use the lm() function to fit the regression model

fit a simple linear regression model with only AGE
lm.AD_demo <- lm(MMSCORE ~ AGE, data = AD_demo)
use summary() to get t-tests of parameters (slope, intercept)
summary(lm.AD_demo)

1 John W. Tukey is a statistician whose career is known to be a strong advocate

of EDA. See his book: Exploratory data analysis in 1977.

Analytics of Small Data

29

Call:
lm(formula = MMSCORE ~ AGE, data = AD_demo)

Residuals:
Min 1Q Median 3Q Max
-8.7020 -0.9653 0.6948 1.6182 2.5447

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.44147 0.94564 32.191 <2e-16 ***
AGE -0.03333 0.01296 -2.572 0.0104 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.11 on 515 degrees of freedom
Multiple R-squared: 0.01268, Adjusted R-squared: 0.01076
F-statistic: 6.614 on 1 and 515 DF, p-value: 0.0104

Some important details could be read from the results shown above. First,

it can be seen that the predictor, AGE, is significant with p-value as 0.0104 by

the hypothesis testing procedure we delineated in Section II.2. It also seems

that, the effect of this predictor, comparing with the noise, is rather weak, as

the R-squared is only 0.01268, suggesting that only 1.2% of the variability in

MMSCORE could be explained by AGE alone.

To increase the R-squared, now let’s include all the demographics

variables into the model:

fit the multiple linear regression model with more than one pre
dictor
lm.AD_demo2 <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD_
demo)
summary(lm.AD_demo2)

Call:
lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD_de
mo)

Residuals:
Min 1Q Median 3Q Max
-8.4290 -0.9766 0.5796 1.4252 3.4539

Coefficients:
Estimate Std. Error t value Pr(>|t|)

30

(Intercept) 27.70377 1.11131 24.929 < 2e-16 ***
AGE -0.02453 0.01282 -1.913 0.0563 .
PTGENDER -0.43356 0.18740 -2.314 0.0211 *
PTEDUCAT 0.17120 0.03432 4.988 8.35e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.062 on 513 degrees of freedom
Multiple R-squared: 0.0612, Adjusted R-squared: 0.05571
F-statistic: 11.15 on 3 and 513 DF, p-value: 4.245e-07

From the results shown above we can see that, the predictor AGE is now

on the boardline of significance with a p-value as 0.0563. The other

predictors, PTGENDER and PTEDUCAT, are significant. It also seems that the R-

squared now increases from 0.01268 to 0.0612, suggesting that 6.12% of the

variability in MMSCORE could be explained by the three variables. The reason

that the predictor AGE is now no longer significant is an interesting

phenomenon, but it is not unusual that a significant predictor becomes

insignificant when other variables are included or excluded. This is because

of the statistical dependence of the estimation of the predictors. As we have

known that

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2(𝐗𝑇𝐗)−1.

As long as 𝐗𝑇𝐗 is not an identify matrix, the estimators of the regression

parameters are dependent in a complicated and data-driven way. Due to this

reason, we need to be very cautious about how to interpret the regression

parameters as they are actually interrelated and also depend on the modeling

process.

Having said that, regression model is still a useful approach to provide

prediction power and insights about the data. Now let’s build a full model

with all the demographics, genetics, and imaging variables to predict MMSCORE.

fit a full-scale model
AD_full <- AD[,c(1:16)]
lm.AD <- lm(MMSCORE ~ ., data = AD_full)

summary(lm.AD)

Call:

Analytics of Small Data

31

lm(formula = MMSCORE ~ ., data = AD_full)

Residuals:
Min 1Q Median 3Q Max
-6.3201 -1.0265 0.2765 1.1977 4.1463

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.09118 1.69735 10.659 < 2e-16 ***
AGE 0.01365 0.01197 1.140 0.254794
PTGENDER -0.13146 0.16356 -0.804 0.421944
PTEDUCAT 0.16020 0.02947 5.436 8.53e-08 ***
FDG 0.86143 0.13368 6.444 2.74e-10 ***
AV45 -1.55526 0.42909 -3.625 0.000319 ***
HippoNV 7.27789 1.20610 6.034 3.11e-09 ***
e2_1 -0.03103 0.27459 -0.113 0.910068
e4_1 -0.18525 0.17651 -1.049 0.294456
rs3818361 0.18737 0.16373 1.144 0.253007
rs744373 -0.30165 0.15576 -1.937 0.053359 .
rs11136000 -0.03018 0.16423 -0.184 0.854257
rs610932 -0.34879 0.16208 -2.152 0.031872 *
rs3851179 0.05742 0.15675 0.366 0.714276
rs3764650 0.31522 0.19691 1.601 0.110049
rs3865444 -0.38589 0.15474 -2.494 0.012960 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.744 on 501 degrees of freedom
Multiple R-squared: 0.3443, Adjusted R-squared: 0.3246
F-statistic: 17.54 on 15 and 501 DF, p-value: < 2.2e-16

From the results shown above we can see that, the PTEDUCAT FDG, AV45,

HoppoNV, rs610932, and rs3865444, are significant. It also seems that the R-

squared now increases from 0.0612to 0.3443, suggesting that now 33.43%

of the variability in MMSCORE could be explained by the variables.

We also notice that there are many variables showing insignificant p-

values. Thus, we may conduct a feature selection procedure to delete the

insignificant variables from the model. Roughly speaking, there are two

approaches. One is called stepwise backward that begins with a full model,

and sequentially remove variables. Another approach is called the stepwise

forward, that begins with a one-predictor model and then sequentially adds

32

variables into the model. Here, let’s use the stepwise backward method for

an example to show how it works.

The first variable to be removed from the model is the one that has the

largest p-value (thus least significant).

Do we need all the variables?
remove e2_1, as it is least significant
lm.AD.reduced <- lm.AD;
lm.AD.reduced <- update(lm.AD.reduced, ~ . - e2_1);
summary(lm.AD.reduced);

Call:
lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45
+
HippoNV + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610
932 +
rs3851179 + rs3764650 + rs3865444, data = AD_full)

Residuals:
Min 1Q Median 3Q Max
-6.3189 -1.0216 0.2807 1.2016 4.1466

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.08148 1.69351 10.677 < 2e-16 ***
AGE 0.01367 0.01196 1.143 0.253499
PTGENDER -0.13191 0.16335 -0.808 0.419758
PTEDUCAT 0.16022 0.02944 5.442 8.25e-08 ***
FDG 0.86185 0.13350 6.456 2.54e-10 ***
AV45 -1.55316 0.42826 -3.627 0.000316 ***
HippoNV 7.27258 1.20400 6.040 3.00e-09 ***
e4_1 -0.18202 0.17401 -1.046 0.296053
rs3818361 0.18809 0.16345 1.151 0.250379
rs744373 -0.30116 0.15555 -1.936 0.053417 .
rs11136000 -0.03037 0.16406 -0.185 0.853200
rs610932 -0.34840 0.16188 -2.152 0.031854 *
rs3851179 0.05936 0.15565 0.381 0.703078
rs3764650 0.31553 0.19670 1.604 0.109322
rs3865444 -0.38599 0.15459 -2.497 0.012848 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.742 on 502 degrees of freedom
Multiple R-squared: 0.3443, Adjusted R-squared: 0.326
F-statistic: 18.82 on 14 and 502 DF, p-value: < 2.2e-16

Analytics of Small Data

33

It can be seen that the R-squared is not affected. To formally draw a

conclusion, we can compare the full model with this new model by F-test

that is implemented in anova():

anova(lm.AD.reduced,lm.AD)

Analysis of Variance Table

Model 1: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +
e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932 + rs38
51179 +
rs3764650 + rs3865444
Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +
e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +
rs3851179 + rs3764650 + rs3865444
Res.Df RSS Df Sum of Sq F Pr(>F)
1 502 1523.2
2 501 1523.1 1 0.038826 0.0128 0.9101

And we can see that it is statistically indistinguishable between the two

models by the F-test, with p-value as 0.9101.

We then move forward to delete the latest least significant predictor,

rs11136000:

lm.AD.reduced <- update(lm.AD.reduced, ~ . - rs11136000);
summary(lm.AD.reduced);

Call:
lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45
+
HippoNV + e4_1 + rs3818361 + rs744373 + rs610932 + rs38511
79 +
rs3764650 + rs3865444, data = AD_full)

Residuals:
Min 1Q Median 3Q Max
-6.3315 -1.0138 0.2713 1.1929 4.1375

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.05037 1.68353 10.722 < 2e-16 ***
AGE 0.01360 0.01194 1.139 0.255316

34

PTGENDER -0.13228 0.16318 -0.811 0.417982
PTEDUCAT 0.16035 0.02941 5.453 7.78e-08 ***
FDG 0.86249 0.13333 6.469 2.34e-10 ***
AV45 -1.54367 0.42477 -3.634 0.000308 ***
HippoNV 7.26894 1.20268 6.044 2.93e-09 ***
e4_1 -0.18292 0.17377 -1.053 0.293003
rs3818361 0.19161 0.16218 1.181 0.237973
rs744373 -0.30130 0.15540 -1.939 0.053077 .
rs610932 -0.34802 0.16171 -2.152 0.031863 *
rs3851179 0.06092 0.15527 0.392 0.694989
rs3764650 0.31577 0.19651 1.607 0.108700
rs3865444 -0.38681 0.15437 -2.506 0.012536 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.74 on 503 degrees of freedom
Multiple R-squared: 0.3442, Adjusted R-squared: 0.3273
F-statistic: 20.31 on 13 and 503 DF, p-value: < 2.2e-16

Again, we can compare the full model with this new model by F-test

anova(lm.AD.reduced,lm.AD)

Analysis of Variance Table

Model 1: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +
e4_1 + rs3818361 + rs744373 + rs610932 + rs3851179 + rs376
4650 +
rs3865444
Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +
e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +
rs3851179 + rs3764650 + rs3865444
Res.Df RSS Df Sum of Sq F Pr(>F)
1 503 1523.2
2 501 1523.1 2 0.14282 0.0235 0.9768

We can repeat this process, until no more variable could be deleted.

While this approach is simple and gives us great visibility of the model

selection process, it is a tedious process. Automation of this process could

be achieved by the function step(), as shown in below:

Automatic model selection
lm.AD.F <- step(lm.AD, direction="backward", test="F")

Analytics of Small Data

35

Then we can obtain the final selected model as:

Step: AIC=581.47
MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373 + rs61093
2 +
rs3764650 + rs3865444

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1537.5 581.47
- rs3764650 1 7.513 1545.0 581.99 2.4824 0.115750
- rs744373 1 12.119 1549.6 583.53 4.0040 0.045924 *
- rs610932 1 14.052 1551.6 584.17 4.6429 0.031652 *
- rs3865444 1 21.371 1558.9 586.61 7.0612 0.008125 **
- AV45 1 50.118 1587.6 596.05 16.5591 5.467e-05 ***
- PTEDUCAT 1 82.478 1620.0 606.49 27.2507 2.610e-07 ***
- HippoNV 1 118.599 1656.1 617.89 39.1854 8.206e-10 ***
- FDG 1 143.852 1681.4 625.71 47.5288 1.614e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It can be seen that the predictors kept in the final model are all significant.

Also, the R-squared is 0.3381 using the 8 predictors. This is not bad

comparing with the R-squared as 0.3443 by using all the 15 predictors. Again,

we can compare the full model with this final model by F-test, which shows

that the it is statistically indistinguishable between the two models by the F-

test, with p-value as 0.6913.

anova(lm.AD.F,lm.AD)

Analysis of Variance Table

Model 1: MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373
+ rs610932 +
rs3764650 + rs3865444
Model 2: MMSCORE ~ AGE + PTGENDER + PTEDUCAT + FDG + AV45 + Hi
ppoNV +
e2_1 + e4_1 + rs3818361 + rs744373 + rs11136000 + rs610932
 +
rs3851179 + rs3764650 + rs3865444
Res.Df RSS Df Sum of Sq F Pr(>F)
1 508 1537.5
2 501 1523.1 7 14.414 0.6773 0.6913

36

II.4 Remarks

The regression model is a very useful model, while at the same time, it is

a model that demands a great amount of meticulous analysis and justification.

It also a model that is frequently reported to be a troublemaker for confusion

or misinterpretation, while a common misinterpretation is to treat the

statistical significance of a predictor as a causal significance in the application

context. Indeed, it is tempting to ignore the statistical nature of the regression

model and treat it as a causal model given its asymmetric form (i.e., predictors

are in one side of equation while outcome is in the other side). As we have

seen in our example, some variables showing significance may disappear

when other variables are added into the model, providing empirical evidences

that the regression model is essentially a hypothesized model, whose

statistical validity relies on its goodness-of-fit on the data.

A model fits the data well and passes the significance test only means that

in data there is nothing significant against the model, but this fit process

doesn’t mean we found in data that this model is the only causal model that

excludes the possibility of other models.

Related to this, as we briefly mentioned before, the design of experiment

(DOE) is a discipline which tries to provide systematic data collection

procedure to render the regression model as a causal inference model. How

this could be done demands a lengthy discussion and illustration. Here, we

briefly review its foundation to see why it has the connection with linear

regression model.

It can be seen that, the uncertainty of �̂� mainly comes from two sources,

the variability from the data that is encoded in 𝜎𝜀
2, and the structure of 𝐗.

The noise encoded in 𝜎𝜀
2 reflects essential uncertainty inherent in the system

or the measurement device that generates the data. But 𝐗 is how we collect

the data at what data points. Thus, many experimental design methods seek

to optimize the structure of 𝐗. We can try different cases of the matrix 𝐗 to

see the implication of this result.

For example, let’s consider the following 𝐗:

Analytics of Small Data

37

𝐗 = [

1 0 0
0 1 0
0
1

0
1

1
1

].

It can be seen that, given this structure, the variance of �̂� takes a very

special structure:

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2𝑰.

In other words, we can draw two main observations. First, the estimations

of the regression parameters are independent, given that their correlations

are zero. Second, the variances of the regression parameters are the same.

From these two traits, this is an ideal structure for the data matrix 𝐗 that is

commonly adopted for design of experiments when we have control over

what data points we could collect. On the other hand, the data matrix 𝐗 most

often takes an arbitrary structure that results in a general form for 𝑐𝑜𝑣(�̂�).

Thus, estimations of the regression parameters are often correlated with each

other. Adding or deleting variables from the regression model will result in

changes of the estimations of other parameters, calling for cautions from us

to interpret the regression models properly.

Another interesting remark we’d like to point it out is that, in regression

models, it is often the case that the interactions of the predictors could

contribute extra prediction power. For example, to predict the yield of a

chemical production process using the predictors, Temperature and Catalyst

concentration, it is likely that we need to include the main effects of both

predictors, but also their interactions. But, generally speaking, it is challenging

in practice to recognize that there are important interaction terms to be

included in the model. Thus, we need both contextual knowledge and

meticulous craftwork of analytics to play with the data and interrogate the

data.

Here we provide an exemplary illustration of how to play with the data

using EDA to discover interactions among variables. Thinking of the

interaction between two variables, let’s say, 𝑋1 and 𝑋2, it essentially suggests

38

that the relationship between 𝑋1 (or 𝑋2) and the outcome 𝑌 depends on

what value the other variable 𝑋2 (or 𝑋1) takes. Thus, this gives us an insight

that, as we can use scatterplot to visualize the relationship between any

variable with the outcome, we could see how this relationship changes

according to another variable.

Figure 2.7: Scatterplots of the continuous predictors versus outcome

variable

To implement this idea, first, let’s use the AD dataset, and draw the

scatterplot of the predictors as shown in Figure 2.7.

Supplement the model with some visualization of the statistical
 patterns
Scatterplot matrix to visualize the relationship between outcom
e variable with continuous predictors
library(ggplot2)
install.packages("GGally")
library(GGally)

draw the scatterplots and also empirical shapes of the distribu
tions of the variables
p <- ggpairs(AD[,c(16,1,3,4,5,6)], upper = list(continuous = "poi

Analytics of Small Data

39

nts")
 , lower = list(continuous = "cor")
)
print(p)

For the other predictors which are binary, we can use boxplot, which is

shown in Figure 2.8.

Boxplot to visualize the relationship between outcome variable
with categorical predictors
library(ggplot2)
qplot(factor(PTGENDER), MMSCORE, data = AD,
 geom=c("boxplot"), fill = factor(PTGENDER))

Figure 2.8: Boxplots of the binary predictors versus outcome variable

Figure 2.9: Scatterplots of PTEDUCAT versus MMSE

40

Now, let’s pick up the scatterplot of MMSCORE versus PTEDUCAT, and see if

the predictor, AGE, mediates the relationship between MMSCORE and PTEDUCAT.

We then color the data points in the scatterplot while the color corresponds

to the numerical scale of AGE. The following R codes generate Figures 2.9 and

2.10.

How to detect interaction terms by exploratory data analysis (E
DA)
require(ggplot2)
p <- ggplot(AD_demo, aes(x = PTEDUCAT, y = MMSCORE))
p <- p + geom_point(aes(colour=AGE), size=2)
p <- p + geom_smooth(method = "auto")
p <- p + labs(title="MMSE versus PTEDUCAT")
print(p)

It looks like that the relationship between MMSCORE and PTEDUCAT indeed

changes according to different levels of AGE. Thus, we draw the same

scatterplot on two levels of AGE, AGE < 60 and AGE > 80.

p <- ggplot(AD_demo[which(AD_demo$AGE < 60),], aes(x = PTEDUCAT,
y = MMSCORE))
p <- p + geom_point(size=2)
p <- p + geom_smooth(method = lm)
p <- p + labs(title="MMSE versus PTEDUCAT when AGE < 60")
print(p)

p <- ggplot(AD_demo[which(AD_demo$AGE > 80),], aes(x = PTEDUCAT,
y = MMSCORE))
p <- p + geom_point(size=2)
p <- p + geom_smooth(method = lm)
p <- p + labs(title="MMSE versus PTEDUCAT when AGE > 80")
print(p)

Then, we can obtain Figure 2.10.

Obviously, an interesting phenomenon emerges and shows that the

relationship between MMSCORE and PTEDUCAT changes dramatically according

to different levels of AGE!

Thus, we further add this interaction term into the model that uses all the

demographics variables:

fit the multiple linear regression model with an interaction te
rm: AGE*PTEDUCAT

Analytics of Small Data

41

lm.AD_demo2 <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT + AGE*PTEDU
CAT, data = AD_demo)
summary(lm.AD_demo2)

Figure 2.10: Scatterplots of PTEDUCAT versus MMSCORE when (left) AGE < 60

or (right) AGE > 80

Then, we can see that this interaction term is significantly contributing

extra prediction power on top of the existing predictors (p-value is 0.01534)!

Call:
lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT + AGE * PTEDU
CAT,
data = AD_demo)

Residuals:
Min 1Q Median 3Q Max
-8.2571 -0.9204 0.5156 1.4219 4.2975

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.809411 5.500441 7.419 4.93e-13 ***
AGE -0.202043 0.074087 -2.727 0.00661 **
PTGENDER -0.470951 0.187143 -2.517 0.01216 *
PTEDUCAT -0.642352 0.336212 -1.911 0.05662 .
AGE:PTEDUCAT 0.011083 0.004557 2.432 0.01534 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.052 on 512 degrees of freedom
Multiple R-squared: 0.07193, Adjusted R-squared: 0.06468
F-statistic: 9.92 on 4 and 512 DF, p-value: 9.748e-08

42

III. Tree Models

III.1 Rationale and Formulation

While the linear regression model is a typical data modeling method, the

decision tree model represents a typical method in the category of algorithmic

modeling as discussed in Table 1. The linear regression model formalizes the

data generating mechanism, which emphasizes an understanding of the

underlying system. In contrast, the decision tree mimics heuristics in human

reasoning. An exemplary tree model is shown in Figure 2.11, which uses

weather and day of week (Dow) (as two predictors) to predict whether to

play basketball (as outcome variable).

Figure 2.11: An exemplary decision tree model

As shown in Figure 2.11, a decision tree contains of one root node

(highlighted as yellow), inner nodes (highlighted as yellow), and decision

nodes (highlighted as green). It also has splitting rules that are specified

alongside the arcs. To predict on a data point, i.e., 𝒙𝑖, the root node is where

to begin with. The data point will travel along the inner nodes according to

the rules specified alongside the arcs. For example, considering the tree

model in Figure 2.11. If 𝒙𝑖 = {Weather = Sunny, Dow = Yes}, then we

can see that the data point will first go to inner node 1, and then, go to the

left decision node and reach the decision that Play = Yes. If 𝒙𝑖 =

Analytics of Small Data

43

{Weather ! = Sunny,Dow = Yes}, then we can see that the data point

will go to the decision node right from the root node, and reach the decision

that Play = No.

Table 2.3: An exemplary dataset for building a decision tree

ID Weather Dow (day-of-week) Play

1 Rainy Saturday No

2 Sunny Saturday Yes

3 Windy Tuesday No

4 Sunny Saturday Yes

5 Sunny Monday No

6 Windy Saturday No

III.2 Theory/Method

The decision tree shown in Figure 2.11 is created by domain knowledge.

In what follows, we introduce how to create such a decision tree using data.

As we can see from Figure 2.11, the key element of a decision tree is the

splitting rules that can lead us through the inner nodes to the final decision

node to reach a decision. A splitting rule is defined by a variable and the set

of values it belongs to, e.g., Weather = Sunny. The variable used for splitting

is referred as the splitting variable, and the corresponding value is refereed as

the splitting value.

Pretending that we don’t have the domain knowledge to create the tree

model in Figure 2.11, let’s consider the dataset in Table 2.3 to build a decision

tree. The dataset has 6 samples, while each sample was collected empirically

by observing the decision of a basketball team.

To build a decision tree model, we now face the first question, which is,

in the root node, which variable should we use to define the first splitting

rule. Possible splitting rules are {Weather = Rainy, Weather = Sunny, Dow

= Saturday, Dow = Monday, Dow = Tuesday}. If we use the splitting rule,

Weather = Sunny, it will result in the decision tree as shown in the left figure

of Figure 2.12. If we use the splitting rule, Dow = Saturday, it will result in

44

the decision tree as shown in the right figure of Figure 2.12. Which one

should we use?

Figure 2.12: The decision tree models with Weather (left tree) or Dow

(right tree) as the splitting variable in the root node

As we can see from Figure 2.12, once there is a set of splitting rule

candidates, one of them needs to be selected at a node for splitting. To help

us decide on which splitting rule is the best, the concept of impurity of data

has been developed.

Impurity and information gain (IG): For classification problem (the

outcome variable is categorical), the impurity of data points in a given node

can be measured by entropy:

𝑒 = ∑ −𝑃𝑖𝑙𝑜𝑔2𝑃𝑖𝑖=1,..,𝐾 .

where 𝐾 represents the number of classes and 𝑃𝑖 is the proportion of data

points in the node that belong to the class 𝑖. The entropy 𝑒 is defined as 0

when the data points in the node all belong to one single class.

It is easy to see that, a node that has a large impurity is not ready to be a

decision node yet. Thus, if we want to further split the node and create two

more child nodes under it, we look for the best splitting rules that can

minimize the impurity of the children nodes. This reduction of impurity can

then be measured by information gain (IG), which is the difference of the

entropy of the splitting node and the average entropy of the two children

nodes weighted by their number of data points. The IG is defined as:

𝐼𝐺 = 𝑒𝑠 − ∑ 𝑤𝑖 ∗ 𝑒𝑖𝑖=1,..,𝑛 .

Analytics of Small Data

45

Here, 𝑒𝑠 is the entropy at the splitting node, 𝑒𝑖 is the entropy at the child

node 𝑖, and 𝑤𝑖 is the number of data points in the children node 𝑖 divided

by the number of data points at the splitting node1.

To show how these concepts could be implemented, let’s look at the

decision tree model in the left figure of Figure 2.12. The entropy of the root

node is calculated as

−
4

6
𝑙𝑜𝑔2

4

6
−
2

6
𝑙𝑜𝑔2

2

6
= 0.92.

The entropy of the left child node (“Weather = Sunny”) is

−
2

3
𝑙𝑜𝑔2

2

3
−
1

3
𝑙𝑜𝑔2

1

3
= 0.92.

The entropy of the right child node (“Weather != Sunny”) is 0 since all

the three data points (ID = 1,3,6) belong to the same class.

The information gain for the splitting rule “Weather = Sunny” is then

𝐼𝐺 = 0.92 −
3

6
∗ 0.92 −

3

6
∗ 0 = 0.46.

For the decision tree in the right figure of Figure 2.12, the entropy of the

left child node (“Dow = Saturday”) is

−
2

4
𝑙𝑜𝑔2

2

4
−
2

4
𝑙𝑜𝑔2

2

4
= 1.

The entropy of the right child node (“Dow != Saturday”) is 0 since the

two data points (ID = 3,5) belong to the same class.

Thus, the information gain for the splitting rule “Dow = Saturday” is then

𝐼𝐺 = 0.92 −
3

6
∗ 1 −

3

6
∗ 0 = 0.42.

As the information gain of “Weather = Sunny” is higher, the splitting rule

“Weather = Sunny” is preferred over its competitor “Dow = Saturday”.

1 For regression problems, the variance of the outcome variable can be

used for measuring the impurity of a node, i.e.,

𝑣 = ∑ (�̅� − 𝑦𝑛)
2𝑁

𝑛=1 ,

where 𝑦𝑛=1,…,𝑁 are the values of the outcome variable, and �̅� is the average

of the outcome variable at the node. And the information gain can be

calculated similarly to the classification problem.

46

Similarly, the information gain can be calculated for all other splitting rules.

As “Weather = Sunny” has the maximum information gain, it is selected for

splitting the root node. The left child node with data points (ID = 2,4,5) still

has two classes, and can be further split by selecting the next best splitting

rule. The right child node has only one class and becomes a decision node

labeled with the decision “play = No”.

Note that, in our example, we only have categorical variables, while

splitting rules could be easily defined. For continuously variables, the values

of a variable are firstly ordered, and then, the average of each pair of

consecutive values is used as the splitting value.

Greedy recursive approach to build a tree: Based on the concept of

impurity and IG, we could develop a greedy strategy that recursively split the

data points until there is no further IG, e.g., when there is only one data point,

or only one class in the node. Most tree-building methods use this approach,

with difference in the definitions of the impurity and IG.

However, this will inevitably lead to a very large decision tree with many

inner nodes and unstable decision nodes (i.e., since the decisions assigned to

these nodes are inferred empirically based on very few data points). Thus,

such a decision tree can be sensitive to noisy data, leading to worse accuracy

and interpretability.

Tree pruning: To mitigate this problem, the pre-pruning or post-pruning

methods can be used to control the complexity of a decision trees. Pre-

pruning stops growing a tree when a pre-defined criterion is met. One can

define the maximum depth of a tree, or minimum number of data points at

each node. As these approaches are based on prior knowledge, they may not

necessary reflect the data characteristics. More data-dependent approaches

can be used. For example, the minimum impurity gain threshold can be used

to stop growing a tree when the impurity gain is below the threshold. Still, a

small impurity gain at a node does not necessarily indicate equivalent small

impurity gain from its children nodes. Therefore, pre-pruning can cause over-

simplified and thus under-fitted tree models. In other words, it is too cautious.

Analytics of Small Data

47

Figure 2.13: An example for tree pruning using pessimistic error

In contrast, post-pruning prunes a tree after it is fully-grown and has less

risk of under-fit as a full-grown tree contains sufficient information captured

from the data. Post-pruning starts from the bottom of the tree. If removing

the sub-tree of an inner node does not increase the error, then the sub-tree

under the inner node can be pruned. Note that, the error here is not the error

calculated based on the training data that is used to train the tree. This error

calculated based on training data is called as empirical error. Rather, here,

we should use the generalization error1, that is, the error when applied to

unseen data. Thus, in the famous decision tree algorithm, C4.5, the

pessimistic error estimation approach is used.

We can derive the pessimistic error estimation using binomial

approximation. Denote the empirical error rate on the training data as �̂�,

which is only an estimation of the generalization error 𝑒. Since each data

point can be either correctly or wrongly classified, we can view the probability

of being correctly classified as a binomial distribution with probability 𝑒.

With this insight, the normal distribution approximation can be applied here

to derive the confidence interval of the generalization error 𝑒 as:

1 We will return to this issue with more delicate discussion in Chapter 5.

48

�̂� − 𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
≤ 𝑒 ≤ �̂� + 𝑧𝛼 2⁄ √

�̂�(1−�̂�)

𝑛
.

The upper bound of the interval, �̂� + 𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
, is used as the

estimate of 𝑒. As this is an upper bound, it is named as pessimistic error

estimation. Note that, the estimate of the error depends on three values, 𝛼,

which is often set to be 0.25 so that 𝑧𝛼 2⁄ =1.15; �̂�, which is the training error;

and 𝑛 , which is the number of data points at the node. Therefore, the

estimated error is larger with a smaller 𝑛, accounting for the sample size as

well.

Considering the tree in Figure 2.13 as an example. Each decision node is

labeled with a class (i.e., either C1 or C2). Besides each node, we also highlight

the distribution of the two classes, the misclassified instances (𝑚), and the

misclassified instances using the pessimistic error estimation (𝑚𝑝).

Figure 2.14: The pruned tree of Figure 2.13

Consider the inner node 1. We can see that, if we prune the subtree below

inner node 1, we will label it with class C1, as 20 of the included data points

are labeled as C1 while 19 are labeled as C2. And we can get that the total

misclassified instances 𝑚 is 19. Thus, �̂� =
19

39
= 0.4871. For the pessimistic

error estimation, we can get that

�̂� + 𝑧𝛼 2⁄ √
�̂�(1−�̂�)

𝑛
= 0.4871 + 1.15√

0.4871(1−0.4871)

39
= 0.579.

Analytics of Small Data

49

Thus, we can get that 𝑚𝑝 = 0.579 × 39 = 22.59.

Now, let’s see if the splitting of this inner node into its two child nodes

improves the pessimistic error. It can be seen that, with this subtree of the

two child nodes, the total misclassified instances 𝑚 is 9+9=18. And by

pessimistic error estimation, 𝑚𝑝 = 11.5 + 11.56 = 23.06 for the subtree.

Therefore, based on the pessimistic error, we should prune the subtree.

Now the pruned tree is shown in Figure 2.14. Now consider whether to

prune the children nodes of the root node. The pessimistic misclassified

instances at the root node is 22.92, and the total pessimistic misclassified

instances from its children nodes is 22.59+0=22.59. Pruning the children

node would lead to increased error, and thus, the children nodes are kept and

the final tree consists of three nodes.

Both pre-pruning and post-pruning are useful in practices, and it is hard

to say which one is better than another. There are tendencies though, i.e., the

post-pruning can often outperform pre-pruning. But, when there are

sufficient data, one can generate a number of values for a pre-pruning

parameter, and cross-validation can be used to determine the best value to

minimize the estimation error. In this case, an appropriately selected pre-

pruning parameter may also perform well. For example, in the “rpart” R

package, the complexity parameter (cp) is used. Using the parameter, all splits

need to improve the impurity score, e.g., information gain, by at least a factor

of cp, that is, splits do not decrease the impurity score by cp will not be

pursued. This strategy also works well in many applications.

III.3 R Lab

Now let’s use the AD dataset for illustrating how the decision tree model

can be used. Here, we use DX_bl as the outcome variable that is binary (“0”

denotes for normal subjects while “1” denotes for diseased subjects), and use

other variables (except ID, TOTAL13 and MMSCORE) to predict DX_bl.

The R code in below loads the needed R packages and loads the data into

the workspace.

library(rpart)
library(rpart.plot)

50

library(dplyr)
library(tidyr)
library(ggplot2)
library(partykit)
theme_set(theme_gray(base_size = 15))

path <- "../analytics/data/ AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]

Figure 2.15: The unpruned decision tree to predict DX_bl

The rpart() function in the R package “rpart” can be used to build the

decision tree using the data and plot the decision tree in Figure 2.15.

tree <- rpart(DX_bl ~ ., data)
prp(tree, nn.cex = 1)

Analytics of Small Data

51

As an associated function with the “rpart” package, the importance score

for each variable can be obtained from the tree. HippoNV has the largest

importance score among all the variables.

print(tree$variable.importance)

HippoNV FDG AV45 AGE PTGENDER
 e4_1
116.6665538 89.5608444 39.9595988 28.2195180 12.2040648
6.4708596
rs3851179 PTEDUCAT rs3818361
4.2352941 1.1552265 0.8663915

The tree can be further pruned with the prune function whereas the

parameter cp controls the model complexity. cp is the minimum relative error

improved by splitting the node. A larger cp leads to a less-complex tree. First,

let we try cp = 0.05 which leads to Figure 2.16.

tree_0.05 <- prune(tree, cp = 0.05)
prp(tree_0.05, nn.cex = 1)

We can see that the tree is pruned. Then, we increase cp to 0.1 which

leads to Figure 2.17.

tree_0.1 <- prune(tree, cp = 0.1)
prp(tree_0.1, nn.cex = 1)

Figure 2.16: The pruned decision tree model to predict DX_bl of the

AD data with cp = 0.05

52

Figure 2.17: The pruned decision tree model to predict DX_bl of the

AD data with cp = 0.1

We can see that, with cp = 0.1, the tree only has two nodes.

Now we have seen that the parameter cp could be used to control the

model complexity in pruning. In practices, cp can be decided by minimizing

the cross-validation error. The cross-validation will be introduced in detail in

Chapter 5. Here, we take this opportunity to present it so we could get a sense

of what it does. First, we split the data into halves, one half for training the

tree model while another half for testing its accuracy. We then build a series

of tree models using the training data with cp values ranging from 0.2 to 0.

For each built tree model, a training error and testing error can be calculated

using the two datasets, respectively. For each tree, the number of decision

nodes is recorded and used for measuring the complexity of the tree.

set.seed(1)
train.ix <- sample(nrow(data), floor(nrow(data)/2))
err.train.v <- NULL
err.test.v <- NULL
leaf.v <- NULL
for (i in seq(0.2, 0, by = -0.005)) {
 tree <- rpart(DX_bl ~ ., data = data[train.ix,], cp = i)
 pred.train <- predict(tree, data[train.ix,], type = "class")
 pred.test <- predict(tree, data[-train.ix,], type = "class")
 current.err.train <- length(which(pred.train != data[train.i
x,]$DX_bl))/length(pred.train)
 current.err.test <- length(which(pred.test != data[-train.ix,
]$DX_bl))/length(pred.test)
 err.train.v <- c(err.train.v, current.err.train)
 err.test.v <- c(err.test.v, current.err.test)
 leaf.v <- c(leaf.v, length(which(tree$frame$var == "<leaf>
")))

Analytics of Small Data

53

}
err.mat <- as.data.frame(cbind(train_err = err.train.v, test_err
= err.test.v,
 leaf_num = leaf.v))
err.mat$leaf_num <- as.factor(err.mat$leaf_num)
err.mat <- unique(err.mat)
err.mat <- err.mat %>% gather(type, error, train_err, test_err)

data.plot <- err.mat %>% mutate(type = factor(type))
ggplot(data.plot, aes(x = leaf_num, y = error, shape = type, colo
r = type)) +
 geom_line() + geom_point(size = 3)

The training errors and testing errors of the trees at different number of

decision nodes are plotted in Figure 2.18. It can be seen that, as the

complexity of trees increases, the training errors continue to decrease, while

the testing errors first decrease but increase at some point. This indicates that,

there is an optimal tree size that can be identified by testing error but will be

missed by training error. This is actually the danger of aggressively pursuing

models that can achieve too-good-to-be-true performances on training data,

a commonly known phenomenon as overfitting.

Figure 2.18: Training and testing errors versus complexity of the tree

model (i.e., measured by the number of decision nodes in the tree)

54

Figure 2.19: Regression tree using three variables to predict MMSCORE

We have been focused on classification problems so far, now let's also try

rpart for the same regression problem illustrated in the linear regression R

lab. Firstly, AGE, PTGENDER and PTEDUCAT are used as the predictor variables.

The tree is plotted in Figure 2.19. The prediction of MMSCORE (a numeric value)

is labeled at each leaf node. In the linear model part, it has been shown that

the relationship between MMSCORE and PTEDUCAT changes substantially

according to different levels of AGE. The decision tree is able to capture the

interaction between PTEDUCAT, AGE and MMSCORE.

AD <- read.csv(text = getURL("https://raw.githubusercontent.com/s
huailab/ind_498/master/resource/data/AD2.csv"))
AD_demo <- subset(AD, select = c("MMSCORE", "AGE", "PTGENDER", "P
TEDUCAT"))
tree <- rpart(MMSCORE ~ ., AD_demo, method = "anova")=TRUE)
prp(tree, nn.cex = 1)

Analytics of Small Data

55

Figure 2.20: Regression tree using all variables to predict MMSCORE

Now let's build a decision tree with all predictor variables. The regression

tree is plotted in Figure 2.20. It can be seen that more interactions are

captured. The tree can also provide insight for feature engineering in a linear

modeling context, e.g., now we can add these interactions, such as FDG and

HippoNV, HippoNV and AGE, as new features to the linear regression model and

evaluate the incremental accuracy gain. However, it should be noted that the

interactions useful in a decision tree may not be optimal for a linear model

given the models are built with different evaluation criteria.

AD_full <- AD[, c(1:16)]
tree <- rpart(MMSCORE ~ ., AD_full, method = "anova")
prp(tree, nn.cex = 1)

56

III.4 Remarks

At each node of a decision tree, split is based on one single variable, and

therefore, if the variable is continuous, the classification boundary for that

split is perpendicular to the variable. And overall the classification boundary

from a decision tree is always parallel or perpendicular to a continuous

variable. This is illustrated in the following graph. The classification boundary

consisting of splits by 𝑋1 and 𝑋2 is either parallel or perpendicular to one axis.

Figure 2.21: Decision boundary captured by tree models

This implies that, when applying a decision tree to a dataset with linear

relationship between predictors and outcome variables, it may not be an

optimal choice. In the following example, we simulate a data set and apply a

decision tree and a logistics regression model (the counterpart of linear

regression model for classification problem that will be introduced in Chapter

3) to the data, respectively. The training data, and the predicted classes for

each data point from the logistic regression and decision models are shown

in Figures 2.22, 2.23 and 2.24, respectively. It can be seen the classification

boundary from the logistics regression model is linear, while the one from

the decision tree is parallel to the axis. This limitation makes a decision tree

not be able to fully capture the linear relationship in the data.

ndata <- 2000
X1 <- runif(ndata, min = 0, max = 1)

Analytics of Small Data

57

X2 <- runif(ndata, min = 0, max = 1)
data <- data.frame(X1,X2)
data <- data %>% mutate(X12 = 0.5 * (X1 - X2), Y = ifelse(X12>=
0,1,0))
ix <- which(abs(data$X12) <= 0.05)
data$Y[ix] <- ifelse(runif(length(ix)) < 0.5, 0, 1)
data <- data %>% select(-X12) %>% mutate(Y = as.factor(as.char
acter(Y)))
ggplot(data,aes(x=X1,y=X2,color=Y))+geom_point()

linear_model <- glm(Y ~ ., family = binomial(link = "logit"), dat
a = data)
tree_model <- rpart(Y ~ ., data = data)
pred_linear <- predict(linear_model, data,type="response")
pred_tree <- predict(tree_model, data,type="prob")[,1]
data_pred <- data %>% mutate(pred_linear_class = ifelse(pred_li
near <0.5,0,1)) %>%
 mutate(pred_linear_class = as.factor(as.character(pred
_linear_class))) %>%
 mutate(pred_tree_class = ifelse(pred_tree <0.5,0,1)
) %>%
 mutate(pred_tree_class = as.factor(as.character(pred_t
ree_class)))
ggplot(data_pred,aes(x=X1,y=X2,color=pred_linear_class))+geom_poi
nt()

ggplot(data_pred,aes(x=X1,y=X2,color=pred_tree_class))+geom_point
()

Figure 2.22: Scatterplot of the generated dataset

58

Figure 2.23: Decision boundary captured by logistic regression model

Figure 2.24: Decision boundary captured by the tree model

IV. Exercises

Data analysis

1. Repeat the analysis shown in the R lab of this chapter, but use

TOTAL13 as the outcome variable. Please build both the regression

model and the decision tree model (for regression). Identify the final

models you would select, evaluate the models, and compare the

regression model with the tree model.

Analytics of Small Data

59

2. Find two datasets from the UCI data repository1 or R datasets2.

Conduct a detailed regression analysis for both datasets using both

regression model and the tree model (for regression), e.g., for

regression model, you may want to conduct model selection, model

comparison, testing of the significance of the regression parameters,

evaluation of the R-squared and significance of the model. Also

comment on the application of your model on the context of the

dataset you have selected.

3. Pick up any dataset you have used, and randomly split the data into

two halves. Use one half to build the tree model and the regression

model. Test the models’ prediction performances on the second half.

Report what you have found, adjust your way of model building, and

suggest a strategy to find the model you consider as the best.

Derivation

4. Consider the case that, in building linear regression models, there is

a concern that some data points may be more important (or more

trustable). Thus, it is not uncommon to assign a weight to each data

point. Denote the weight for the ith data point as 𝑤𝑖. We still want

to estimate the regression parameters in the least squares framework.

Follow the process of the derivation of the least squares estimator

and propose your new estimator of the regression parameters.

5. Build a decision tree model based on the following dataset. Don’t

use R. Use your pen and paper, and show the process.

Table 2.4: dataset for building a decision tree

ID X1 X2 Y

1 0.22 0.38 No

2 0.58 0.32 Yes

1 http://archive.ics.uci.edu/ml/index.php
2 https://vincentarelbundock.github.io/Rdatasets/datasets.html

60

3 0.57 0.28 Yes

4 0.41 0.43 Yes

5 0.6 0.29 No

6 0.12 0.32 Yes

7 0.25 0.32 Yes

8 0.32 0.38 No

Programming

6. Write your own R script to implement the least squares estimation

of a regression model. Compare the output from your script with the

output from lm().

7. As a continuation of 1, also write your own R script to derive the p-

value of your regression parameters. Compare the output from your

script with the output from lm().

8. Write your own R script to build a decision tree using the greedy

recursive process mentioned in this chapter, using the information

gain. By your script, the tree growth process stops when a given

depth of the tree is reached.

Analytics of Small Data

61

CHAPTER 3: RECOGNITION
LOGISTIC REGRESSION AND

RANKING

I. Overview

Chapter 3 is about “Recognition”. This is a very important capability in

real-world practices of analytics. It is a capability to recognize the same

“abstracted” analytic problem embedded in seemly different real-world

problems. This is not to say that all the real-world problems can be reduced

to one single abstracted problem. A real-world problem usually contains

multiple perspectives and layers, presenting itself as a combination or

composition of multiple abstracted problems. Being able to recognize these

abstracted problems holds the key to solve these real-world problems

effectively. After all, to solve a real-world problem, at a certain point or a

certain level, you have to bring the problem or part of the problem or a

certain aspect of the problem into the territory of a classic analytic problem,

because only in those classic territories we know we can solve problems for

sure.

62

II. Logistic Regression Model

II.1 Rationale and Formulation

Linear regression model is introduced as a tool to predict a continuous

response (or called outcome) variable 𝑦 using a few input variables 𝒙. In

some applications, the response is a binary variable that denotes two classes.

For example, in the AD dataset, we may wonder if we could use some

variables to predict if the subject is a normal person or diseased.

We have learned about linear regression model to connect some input

variables with the outcome variable. It is natural to wonder if and how the

linear regression framework could still be useful here. Specifically, here, the

input variables are still 𝒙, but the outcome is not simply 𝑦. Rather, we may

be more interested to predict probability 𝑃𝑟(𝑦 = 1). Thus, we want to create

probability by a function 𝑝(𝒙) such that 𝑃𝑟(𝑦 = 1) = 𝑝(𝒙). Following the

mentality of linear regression, we somehow envision that the linear form,

𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 , should be used here as a constitutional component to define

𝑝(𝒙). It is hard to directly link 𝑝(𝒙) = 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 though, since 𝑝(𝑥)

as a probability has to be in the range of [0,1] but 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 has no

limitation in the range. If we look closer into the idea of using a linear form

to encode the predictive information in 𝒙, we may realize that the linear form

is very useful in ranking the possibilities rather than directly being eligible

probabilities. In other words, a linear form is advantageous to make a

comparison of two inputs, say, 𝒙𝑖 and 𝒙𝑗, and evaluates which one leads to a

higher probability of 𝑃𝑟(𝑦 = 1). Thus, we don’t have to let 𝑝(𝒙) = 𝛽0 +

∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 , but only need 𝑝(𝒙) ∝ 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 .

To fix this problem, statisticians soon found that it is better to link these

two entities as:

log
𝑝(𝒙)

1−𝑝(𝒙)
= 𝛽0 +∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 .

This is the so-called logistic regression model. The name stems from the

transformation of 𝑝(𝒙) used here, i.e., the log
𝑝(𝒙)

1−𝑝(𝒙)
, which is the logistic

Analytics of Small Data

63

transformation that has been widely used in many areas such as physics and

signal processing.

The logistic regression model can be further transformed:

𝑝(𝒙) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1

)
.

Based on this, we could predict 𝑦 = 1 if 𝑝(𝒙) ≥ 0.5 , and 𝑦 = 0 if

𝑝(𝒙) < 0.5.

As the thought process revealed above, logistic regression model is not

the only eligible model for doing classification using linear form of the input

variables. This is just one of the possibilities motivated by the linkage we can

establish between 𝑝(𝒙) and 𝛽0 +∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 by log

𝑝(𝒙)

1−𝑝(𝒙)
. Later we will

learn more such models such as the Support Vector Machine (SVM) that still

keep the linear form but follow different linkage functions. It is very

important to know that this is a choice made by us, rather than a reality

imposed on us nor a mathematical necessity that we have to accept.

II.2 Theory/Method

Now we show how to estimate the regression parameters in a logistic

regression model.

The likelihood function is:

𝐿(𝜷) = ∏ 𝑝(𝒙𝑛)
𝑦𝑛(1 − 𝑝(𝒙𝑛))

1−𝑦𝑛𝑁
𝑛=1 .

We use the log-likelihood to turn products into sums:

𝑙(𝜷) = ∑ {𝑦𝑛 log 𝑝(𝒙𝑛) + (1 − 𝑦𝑛) log(1 − 𝑝(𝒙𝑛))}
𝑁
𝑛=1 .

This could be further transformed into

𝑙(𝜷) = ∑ − log (1 + 𝑒𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1)𝑁

𝑛=1 − ∑ 𝑦𝑛(𝛽0 + ∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1)𝑁

𝑛=1 ,

since

∑ {𝑦𝑛 log 𝑝(𝒙𝑛) + (1 − 𝑦𝑛) log(1 − 𝑝(𝒙𝑛))}
𝑁
𝑛=1 ,

= ∑ log(1 − 𝑝(𝒙𝑛))
𝑁
𝑛=1 −∑ 𝑦𝑛 log

𝑝(𝒙𝑛)

1−𝑝(𝒙𝑛)
𝑁
𝑛=1 ,

= ∑ − log (1 + 𝑒𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1)𝑁

𝑛=1 − ∑ 𝑦𝑛(𝛽0 +∑ 𝛽𝑖𝑥𝑛𝑖
𝑝
𝑖=1)𝑁

𝑛=1 .

64

The Newton-Raphson algorithm is commonly used to optimize the log-

likelihood function of the logistic regression model to identify the optimal

regression parameters. The Newton-Raphson algorithm is an iterative

algorithm that seeks updates of the current solution using the following

formula:

𝜷𝑛𝑒𝑤 = 𝜷𝑜𝑙𝑑 − (
𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
)
−1

𝜕𝑙(𝜷)

𝜕𝜷
.

Here, 𝜷 is the column vector form of the regression parameters.

We can show that

𝜕𝑙(𝜷)

𝜕𝜷
= ∑ 𝒙𝑛(𝑦𝑛 − 𝑝(𝒙𝑛))

𝑁
𝑛=1 ,

𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
= −∑ 𝒙𝑛𝒙𝑛

𝑇𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛))
𝑁
𝑛=1 .

A certain structure can then be revealed if we rewrite it in matrix form:

𝜕𝑙(𝜷)

𝜕𝜷
= 𝐗𝑇(𝒚 − 𝒑),

𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
= −𝐗𝑇𝐖𝐗.

where 𝐗 is the 𝑁 × (𝑝 + 1) input matrix, 𝒚 is the 𝑁 × 1 column vector of

𝑦𝑖 , 𝒑 is the 𝑁 × 1 column vector of 𝑝(𝒙𝑛), and 𝐖 is a 𝑁 × 𝑁 diagonal

matrix of weights with the nth diagonal element as 𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛)).

Then, plugging this into the updating formula of the Newton-Raphson

algorithm, we can derive that

𝜷𝑛𝑒𝑤 = 𝜷𝑜𝑙𝑑 + (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖(𝒚− 𝒑),

= (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖(𝐗𝜷𝑜𝑙𝑑 +𝐖−1(𝒚 − 𝒑)),

= (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒛,

where 𝐳 = 𝐗𝜷𝑜𝑙𝑑 +𝐖−1(𝒚 − 𝒑).

This resembles the generalized least squares (GLS) estimator of a

regression model, where each data point (𝒙𝑛, 𝑦𝑛) is associated with a weight

𝑤𝑛 to reduce the influence of potential outliers in fitting the regression model.

This insight revealed by the Newton-Raphson algorithm suggests a new

perspective to look at the logistic regression model. The updating formula

suggests that we are actually solving a weighted regression model as:

Analytics of Small Data

65

𝜷𝑛𝑒𝑤 ⟵ argmin
𝜷
(𝒛 − 𝐗𝜷)𝑇𝐖(𝒛 − 𝐗𝜷).

For this reason, this algorithm is also called the Iteratively Reweighted

Least Square or IRLS algorithm. 𝒛 is referred as the adjusted response.

Putting all these together, a complete flow of the IRLS is shown in below:

1. Initialize 𝜷.

2. Compute 𝒑 by its definition: 𝑝(𝒙𝑛) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑛𝑖

𝑝
𝑖=1

)
 for 𝑛 =

1,2,… ,𝑁.

3. Compute the diagonal matrix 𝐖, while the nth diagonal element as

𝑝(𝒙𝑛)(1 − 𝑝(𝒙𝑛)) for 𝑛 = 1,2,… ,𝑁.

4. Set 𝒛 as = 𝐗𝜷 +𝐖−1(𝒚 − 𝒑).

5. Set 𝜷 as (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒛.

6. If the stopping criteria is met, stop; otherwise go back to step 2.

II.3 R Lab

Focusing on the AD dataset, now let’s predict the diagnosis of the

subjects either as normal or diseased. The variable, DX_bl, encodes the

diagnosis information, i.e., “0” denotes normal while “1” denotes diseased.

Dataset of Alzheimer's Disease
Objective: prediction of diagnosis
filename
AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

First, let’s examine a simple logistic regression model using the function

glm() with only one predictor, FDG.

Fit a logistic regression model with FDG
logit.AD <- glm(DX_bl ~ FDG, data = AD, family = "binomial")
summary(logit.AD)

Call:
glm(formula = DX_bl ~ FDG, family = "binomial", data = AD)

Deviance Residuals:

66

Min 1Q Median 3Q Max
-2.4686 -0.8166 -0.2758 0.7679 2.7812

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 18.3300 1.7676 10.37 <2e-16 ***
FDG -2.9370 0.2798 -10.50 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 711.27 on 516 degrees of freedom
Residual deviance: 499.00 on 515 degrees of freedom
AIC: 503

Number of Fisher Scoring iterations: 5

It can be seen from the summary of the built model that the predictor FDG

is significant, as the p-value is <2e-16 that is far less than 0.05. Although it

is not as straightforward as in linear regression model that we could derive

the metric R-squared to examine how much proportion of the variability of

the outcome variable could be explained away by the predictor, here, we

could observe that, out of the total deviance of 711.27, 711.27– 499.00 =

212.27 could be explained by the predictor FDG.

We could then query what is the 95% CI of the regression parameter:

CIs of the regression parameters using profiled log-likelihood
confint(logit.AD)

2.5 % 97.5 %
(Intercept) 15.033585 21.974091
FDG -3.513878 -2.415248

It is worthy of mentioning that, the wald.test() that builds on the Chi-

squared test, is also another method that is often used in testing the

significance of the regression parameters in logistic regression model. The

results by the wald.test() is usually in compliance with the approximated t-

test results as shown in the summary() function as we have seen above.

wald test for the regression coefficients
library(aod)

Analytics of Small Data

67

Warning: package 'aod' was built under R version 3.3.3

wald.test(b = coef(logit.AD), Sigma = vcov(logit.AD), Terms = 2)

For instance, we can see that, by setting “Terms = 2”, the Chi-squared

test used in the wald.test() shows significance of the predictor FDG in

predicting DX_bl.

Wald test:

Chi-squared test:
X2 = 110.2, df = 1, P(> X2) = 0.0

With a built model, it is of interest to see how it can be used to predict on

a given dataset. Here, for presentational purpose, we randomly pick up 200

samples from the AD dataset to form the AD.pred, our imagined dataset to

be predicted by the model.

To predict on a given dataset
AD.pred <- AD[sample(1:dim(AD)[1], 200),]
predict() uses all the temp values in dataset, including append
ed values
pred <- predict(logit.AD, AD.pred, type = "link", se.fit = TRUE)
AD.pred$fit <- pred$fit
AD.pred$se.fit <- pred$se.fit

We can readily convert these information into the 95% CIs of the

predictions (the way these 95% CIs are derived are again, only in

approximated sense).

CI for fitted values
AD.pred <- within(AD.pred, {
 # added "fitted" to make predictions at appended temp values
 fitted = exp(fit) / (1 + exp(fit))
 fit.lower = exp(fit - 1.96 * se.fit) / (1 + exp(fit - 1.96 * s
e.fit))
 fit.upper = exp(fit + 1.96 * se.fit) / (1 + exp(fit + 1.96 * s
e.fit))
})

We can draw the following figure to visualize the prediction.

visualize the prediction
library(ggplot2)
newData <- AD.pred[order(AD.pred$FDG),]

68

p <- ggplot(newData, aes(x = FDG, y = DX_bl))
predicted curve and point-wise 95% CI
p <- p + geom_ribbon(aes(x = FDG, ymin = fit.lower, ymax = fit.up
per), alpha = 0.2)
p <- p + geom_line(aes(x = FDG, y = fitted), colour="red")
fitted values
p <- p + geom_point(aes(y = fitted), size=2, colour="red")
observed values
p <- p + geom_point(size = 2)
p <- p + ylab("Probability")
p <- p + labs(title = "Observed and predicted probability of dise
ase")
print(p)

Figure 3.1: Predicted probabilities (with their 95% CIs) versus observed

outcomes

The figure is shown in Figure 3.1. It can be seen that, the model prediction

is significant and captures the relationship between FDG with DX_bl with a

smooth logit curve, and the prediction confidences are fairly small (evidenced

by the tight 95% CIs).

On the other hand, from Figure 3.1, we can also see that, while the single-

predictor model is significant and does well on the two extreme ends of the

probability range, in the middle part its prediction power is limited, calling

for more predictors to enhance its prediction power. Thus, in the next step,

we decide to add more variables to the logistic regression model. Before we

build the model, it is of interest to visualize the relationships between the

Analytics of Small Data

69

predictors with the outcome variable. For example, in the following we show

how the continuous variables could be presented in Boxplot form to see if

the distribution of the continuous variable is different across the two classes

of samples.

Figure 3.2: Boxplots of the continuous predictors in the two classes

install.packages("reshape2")
require(reshape2)

AD.long <- melt(AD[,c(1,2,4,5,6,7,19)], id.vars = c("ID", "DX_bl
"))
Plot the data using ggplot
require(ggplot2)
p <- ggplot(AD.long, aes(x = factor(DX_bl), y = value))
boxplot, size=.75 to stand out behind CI
p <- p + geom_boxplot(size = 0.75, alpha = 0.5)
points for observed data
p <- p + geom_point(position = position_jitter(w = 0.05, h = 0),
alpha = 0.1)
diamond at mean for each group
p <- p + stat_summary(fun.y = mean, geom = "point", shape = 18, s
ize = 6,
 alpha = 0.75, colour = "red")

70

confidence limits based on normal distribution
p <- p + stat_summary(fun.data = "mean_cl_normal", geom = "errorb
ar",
 width = .2, alpha = 0.8)
p <- p + facet_wrap(~ variable, scales = "free_y", ncol = 3)
p <- p + labs(title = "Boxplots of variables by diagnosis (0 - no
rmal; 1 - patient)")
print(p)

This code will generate Figure 3.2 which shows that some variables, such

as FDG and HippoNV, could separate the two classes significantly. Some

variables such as AV45 and AGE have less prediction power, but still look

promising. It is important to recognize that these figures only show marginal

relationship among variables. Thus, while it is helpful, it is also important to

keep in mind its limitations such as the inability to show synergistic effects

among the variables.

Just like in the linear regression model, we could use the function step()

to automatically select the best model given a set of variables.

Automatic selection of the model
logit.AD.full <- glm(DX_bl ~ ., data = AD[,c(1:16)], family = "bi
nomial")
logit.AD.final <- step(logit.AD.full, direction="both", trace =
0)
summary(logit.AD.final)

Call:
glm(formula = DX_bl ~ AGE + PTEDUCAT + FDG + AV45 + HippoNV +
rs3818361 + rs610932 + rs3851179, family = "binomial", dat
a = AD[,
c(1:16)])

Deviance Residuals:
Min 1Q Median 3Q Max
-2.6385 -0.5022 -0.1146 0.3651 3.0694

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 31.17834 3.76132 8.289 < 2e-16 ***
AGE -0.03128 0.02134 -1.466 0.1427
PTEDUCAT -0.12833 0.05087 -2.523 0.0116 *
FDG -2.73262 0.33499 -8.157 3.43e-16 ***
AV45 1.58053 0.72007 2.195 0.0282 *

Analytics of Small Data

71

HippoNV -24.42793 2.74972 -8.884 < 2e-16 ***
rs3818361 -0.43672 0.28703 -1.522 0.1281
rs610932 0.47909 0.28390 1.688 0.0915 .
rs3851179 -0.48461 0.27440 -1.766 0.0774 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 711.27 on 516 degrees of freedom
Residual deviance: 344.47 on 508 degrees of freedom
AIC: 362.47

Number of Fisher Scoring iterations: 6

The final model selected by the backward-forward selection procedure

implemented in the step() function is shown in below, which includes 8

predictors and one intercept. You may have noticed that some variables

included in this model are actually not significant by the approximated t-test.

The model as a whole could be evaluated by the Chi-square test against

the null hypothesis that there is a lack of fit. And it can be seen that the model

shows no lack of fit as the p-value is 1.

Test residual deviance for lack-of-fit (if > 0.10, little-to-no
 lack-of-fit)
dev.p.val <- 1 - pchisq(logit.AD.final$deviance, logit.AD.final$d
f.residual)
dev.p.val

[1] 1

Again, we can derive the 95% CIs of the regression coefficients:

coefficients and 95% CI
cbind(coef = coef(logit.AD.final), confint(logit.AD.final))

And we can observe that:

coef 2.5 % 97.5 %
(Intercept) 31.17834039 24.15644635 38.94011124
AGE -0.03127754 -0.07367180 0.01022977
PTEDUCAT -0.12833007 -0.23028570 -0.03019323
FDG -2.73262447 -3.42455191 -2.10810353
AV45 1.58052749 0.17699902 3.00488253
HippoNV -24.42793042 -30.12412328 -19.31065470
rs3818361 -0.43672386 -1.00682550 0.12136335

72

rs610932 0.47909019 -0.07263237 1.04320233
rs3851179 -0.48460576 -1.02757559 0.05088704

Regarding the regression coefficients of logistic regression model, it is also

of interest to convert them into odds ratios for another interpretation. This

could be done by directly calling upon the definition of the odds ratio, as

done in the codes shown in below:

odds ratios and 95% CI
exp(cbind(OR = coef(logit.AD.final), confint(logit.AD.final)))

Then, we can derive the odds ratios and their 95% CIs.

OR 2.5 % 97.5 %
(Intercept) 3.472012e+13 3.097500e+10 8.155967e+16
AGE 9.692065e-01 9.289765e-01 1.010282e+00
PTEDUCAT 8.795630e-01 7.943066e-01 9.702580e-01
FDG 6.504835e-02 3.256387e-02 1.214681e-01
AV45 4.857517e+00 1.193630e+00 2.018384e+01
HippoNV 2.460847e-11 8.265316e-14 4.106664e-09
rs3818361 6.461498e-01 3.653770e-01 1.129035e+00
rs610932 1.614605e+00 9.299426e-01 2.838292e+00
rs3851179 6.159400e-01 3.578735e-01 1.052204e+00

Besides these significant tests and presentations of the model parameters,

we can also look at the predictions of the model on the samples. We can use

the function, fitted(), to derive the probabilities of diseased given by the

model for the samples. Then, we could visualize the predictions using the

boxplots:

visualize the correlation
tempData = cbind(Yhat,AD$DX_bl)
require(ggplot2)
qplot(factor(AD$DX_bl), Yhat, data = AD,
 geom=c("boxplot"), fill = factor(AD$DX_bl),title="Predictio
n versus Observed")

The result is shown in Figure 3.3, which indicates that the model can

separate the two classes significantly.

Analytics of Small Data

73

Figure 3.3: Boxplots of the predicted probabilities of diseased in the

two classes

II.4 Remarks

Another perspective to look into the origin of logistic regression model is

motivated by an empirical observation. Here, let’s use the AD dataset, and

pick up the variables, HippoNV and DX_bl, to see empirically what is the shape

the relationship between the two takes. Specifically, here, we categorize the

continuous variable HippoNV into distinct levels, and observe what is the

prevalence of AD incidences within each level. The following R code serves

this data processing purpose.

Create the frequency table in accordance of categorization of H
ippoNV
temp = quantile(AD$HippoNV,seq(from = 0.05, to = 0.95, by = 0.0
5))
AD$HippoNV.category <- cut(AD$HippoNV, breaks=c(-Inf, temp, Inf))
tempData <- data.frame(xtabs(~DX_bl + HippoNV.category, data = A
D))
tempData <- tempData[seq(from = 2, to = 2*length(unique(AD$HippoN
V.category)), by = 2),]
summary(xtabs(~DX_bl + HippoNV.category, data = AD))

tempData$Total <- colSums(as.matrix(xtabs(~DX_bl + HippoNV.catego
ry, data = AD)))
tempData$p.hat <- 1 - tempData$Freq/tempData$Total
tempData$HippoNV.category = as.numeric(tempData$HippoNV.category)
str(tempData)

74

We can use the str(tempData) to visualize the data we have converted,

where 20 levels of HippoNV has been created; “Total” denotes the total

number of subjects within each level, and “p.hat” denotes the proportion of

the diseased subjects within each level (the prevalence).

str(tempData)

'data.frame': 20 obs. of 5 variables:
$ DX_bl : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2
 2 2 2 ...
$ HippoNV.category: num 1 2 3 4 5 6 7 8 9 10 ...
$ Freq : int 24 25 25 21 22 15 17 17 19 11 ...
$ Total : num 26 26 26 26 26 25 26 26 26 34 ...
$ p.hat : num 0.0769 0.0385 0.0385 0.1923 0.1538
 ...

We are now ready to further visualize the relationship between the two

variables by drawing a scatterplot, as shown in Figure 3.4. We also use the

“loess” method, which is a nonparametric smoothing method, to fit the

relationship, which clearly shows a logit type functional shape of the

relationship. This provides an empirical justification of the use of the logic

transformation log
𝑝(𝒙)

1−𝑝(𝒙)
, to 𝑝(𝒙) and 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1 , which gives birth to

the logistic regression model.

Figure 3.4: The empirical relationship between HippoNV and DX_bl takes a

shape as the logit function

Analytics of Small Data

75

Draw the scatterplot of HippoNV.category versus the probability
 of normal
library(ggplot2)

p <- ggplot(tempData, aes(x = HippoNV.category, y = p.hat))
p <- p + geom_point(size=3)
p <- p + geom_smooth(method = "loess")
p <- p + labs(title ="Empirically observed probability of normal
", xlab = "HippoNV")
print(p)

III. A Product Ranking Problem by Pairwise Comparison

III.1 Rationale and Formulation

In recent years, we have witnessed a growing interest in estimating the

ranks of a list of items. This same problem could be found in a variety of

applications, such as the online advertisement of products on Amazon or

movie recommendation by Netflix. These problems could be analytically

summarized as: given a list of items denoted by 𝑴 = {𝑀1,𝑀2, … ,𝑀𝑝}, what

is the rank (denoted by 𝝓 = {𝜙1, 𝜙2, … , 𝜙𝑝}) we should attribute to them?

Here, 𝝓 is a vector of real values, i.e., the larger the 𝜙𝑖, the higher the rank

of 𝑀𝑖.

To obtain this ranking of the items, comparison data (either by domain

expert or users) is often collected, e.g., a pair of items in 𝑀, let's say, 𝑀𝑖 and

𝑀𝑗, will be pushed to the expert/user who conduct the comparison to see if

𝑀𝑖 is better than 𝑀𝑗, and then, a score, denoted as 𝑦𝑘 , will be returned, i.e.,

a positive 𝑦𝑘 indicates that the expert/user knowledge more tends to support

that 𝑀𝑖 is better than 𝑀𝑗, while a negative 𝑦𝑘 indicates the opposite. Note

that the larger the 𝑦𝑘 , stronger the knowledge.

Following this line, we denote the initial data set as 𝐷0, which consists of

the set of pairwise comparisons that are queried (denoted as a set 𝑺0) and the

corresponding expert response data (denoted as a vector 𝒚0). The next

question is, how to estimate the underlying ranking 𝝓? And further, how to

further collect pairwise comparison data to enhance the estimation of 𝝓, i.e.,

76

in other words, what should be the new comparisons in 𝑺1 so we can collect

the corresponding new data 𝒚1?

III. 2 Theory/Method

Obviously, these are statistical questions. From the first glance, it looks

unfamiliar. But in this paper1, it is revealed that the underlying statistical

model is a linear regression model! This surprising recognition indicates that

we can readily use the rich array of methods and conclusions in linear

regression framework to solve many problems in ranking!

 To see that, first, it is important to make explicit what probabilistic

relationship is implied in the pairwise comparison mechanism, that can be

used to model the relationship between the parameter to be estimated (𝝓)

and the data (𝐷0). Specifically, we could establish a probabilistic relationship

between 𝝓 and the observed 𝐷0, i.e., for the kth comparison that involves

items 𝑀𝑖 and 𝑀𝑗, we could assume that 𝑦𝑘 is distributed as:

𝑦𝑘~𝑁(𝜙𝑖 − 𝜙𝑗 , 𝜎
2 𝑤𝑘⁄).

This essentially assumes that if the item 𝑀𝑖 is more (or less) important

than the model 𝑀𝑗, we will expect to see positive (or negative) values of 𝑦𝑘 .

This is consistent with the nature of the expert/user comparison data in many

applications. Note that, 𝜎2 encodes the overall accuracy level of the

expert/user knowledge, as more knowledgeable expert/user will tend to have

smaller 𝜎2 . Also, 𝑤𝑘 encodes uncertainty in this particular comparison,

acting as the local accuracy level of the expert/user knowledge. In practice,

expert/user could also provide their confidence level, i.e., 𝑤𝑘, along with 𝑦𝑘 .

Alternatively, when this information is lacking, we could simply assume

𝑤𝑘 = 1 for all the comparison data. Following this line, we could further

illustrate how we could represent the comparison data in a more compact

matrix form. This is shown in Figure 3.5.

1 Osting, B., Brune, C. and Osher, S. Enhanced statistical rankings via targeted data collection.

Proceedings of the 30th International Conference on Machine Learning (ICML) 2013.

Analytics of Small Data

77

Figure 3.5: The data structure and its analytic formulation underlying

the pairwise comparison. Each node is an item in 𝑀 while each arc

represents a comparison of two items

Note that it is straightforward to derive the structure of the matrix 𝐁 as

shown in Figure 3.5:

𝐁𝑘𝑗 = {
1 𝑖𝑓 𝑗 = ℎ𝑒𝑎𝑑(𝑘)
−1 𝑖𝑓 𝑗 = 𝑡𝑎𝑖𝑙(𝑘)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here, 𝑗 = 𝑡𝑎𝑖𝑙(𝑘) if the kth comparison is asked in the form as “if 𝑀𝑖 is

better than 𝑀𝑗 ” (i.e., denoted as 𝑀𝑖 → 𝑀𝑗); otherwise, 𝑗 = ℎ𝑒𝑎𝑑(𝑘) for

question asked in the form as 𝑀𝑗 → 𝑀𝑖 .

Then, we can derive that

𝒚~𝑁(𝐁𝝓, 𝜎2𝐖−1).

where 𝐖 is the diagonal matrix of elements 𝑤𝑘 for 𝑘 = 1,2, … , 𝐾. Thus, for

the initial expert comparison data 𝐷0, we could derive that

𝒚0~𝑁(𝐁0𝝓,𝜎
2𝐖0

−1).

where 𝐁0 is defined on the set 𝑆0 . Using the framework developed in

Chapter 2, we could derive the GLS estimator of 𝝓 as

�̂� = (𝐁0
𝑇𝐖0𝐁0)

−1𝐁0
𝑇𝐖0𝒚0.

The recognition of the linear regression formulation underling the ranking

problem brings more insights and operational possibilities to solve the

problem better. For example, as many design of experiments techniques have

been developed for optimal data collection, while most are based on the

linear regression framework, these techniques could find relevance in this

78

ranking problem, e.g., what new comparison data we should collect to

optimize statistical accuracy and efficiency given limited budget? As shown

in the paper, an E-optimal design method could be introduced here to

optimally decide on which new comparison should be conducted. As this

process involves Bayesian statistics, optimal design, and optimization,

interested readers are encouraged to read the paper.

IV. Exercises

Data analysis

1. Create a new binary variable based on AGE, by labeling the subjects

whose age is above the mean of AGE to be class “1” and labeling the

subjects whose age is below the mean of AGE to be class “0”. Then,

repeat the analysis shown in the R lab of this chapter for the logistic

regression model and the analysis shown in the R lab of Chapter 2

for decision tree model. Identify the final models you would select,

evaluate the models, and compare the regression model with the tree

model.

2. Find two datasets from the UCI data repository or R datasets.

Conduct a detailed analysis for both datasets using both logistic

regression model and the tree model, e.g., for regression model, you

may want to conduct model selection, model comparison, testing of

the significance of the regression parameters, evaluation of the R-

squared and significance of the model. Also comment on the

application of your model on the context of the dataset you have

selected.

3. Pick up any dataset you have used, and randomly split the data into

two halves. Use one half to build the tree model and the regression

model. Test the models’ prediction performances on the second half.

Report what you have found, adjust your way of model building, and

suggest a strategy to find the model you consider as the best.

Derivation

Analytics of Small Data

79

4. Use your pen and paper, write up the optimization process to

estimate the regression parameters using the dataset in Table 2.4. If

your optimization process requires more than 3 iterations to

converge, delineate 3 iterations is sufficient.

Programming

5. Write your own R script to implement the IRLS algorithm of a

logistic regression model. Compare the output from your script with

the output from glm().

6. Write your own R script to generate prediction of new data points

using an estimated logistic regression model.

7. Write your own R script to implement the ranking problem

formulated as a linear regression model. Test it on the dataset shown

below to estimating the 𝝓.

𝑀6 → 𝑀4 = 2.33, 𝑀5 → 𝑀6 = 1.80, 𝑀4 → 𝑀3 = −7.45, 𝑀2 →

𝑀8 = 13.18 , 𝑀2 → 𝑀6 = 4.37 , 𝑀1 → 𝑀5 = 0.32 , 𝑀7 → 𝑀2 =

−0.43.

(Here, for validation only, the comparison data is generated from

𝝓 = {3.9,10.2,6.7,1.7,5.2,3.4,7.8,2.3}.

CHAPTER 4: COMPUTATION
BOOTSTRAP AND RANDOM FOREST

I. Overview

Chapter 4 is about “Computation”. It is how we can work with computer,

exploiting its remarkable power in iterations and conducting repetitive tasks

which human beings often find burdensome to do. It is this capacity of

computers in conducting repetitive tasks that enables applications of modern

optimization algorithms, which underlie many data analytics models. This

capacity also provides powerful nonparametric statistical techniques, leading

to developments of powerful computational statistical models that don’t

require analytic tractability. A particular invention that has played a critical

role in many data analytic applications is the Bootstrap technique. Building

on the idea of Bootstrap and its variants, Random Forest was also invented

together with many more powerful ensemble learning methods.

Analytics of Small Data

81

II. How Bootstrap Works

II.1 Rationale and Formulation

There are multiple perspectives to look at Bootstrap. One perspective that

has been well studied in the seminar book1 of Efron and Tibshirani is to treat

Bootstrap as a simulation of the “sampling process”. As we know, sampling

refers to the idea that we could draw samples again and again from the same

population. Many statistical techniques make sense only when we consider

the possibility of conducting sampling. For example, when we say the type 1

error in a hypothesis testing is 0.05, we mean that on average we may reject

the null hypothesis 5 times even when it is true – if we conduct the same

hypothesis testing 100 times (i.e., by repeating the sampling process 100 times,

each time we calculate the test statistics and compare it with the critical value,

and make a decision).

Of course, Bootstrap is not a real sampling process since no new data

points are really collected. It is a simulated sampling process. Probably the

idea of Bootstrap could be better demonstrated in Figure 4.1:

Figure 4.1: A demonstration of the Bootstrap process

As shown in Figure 4.1, a collected dataset has 5 samples. The 5 samples

provide a representation of the underlying population. To mimic the

1 Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall/CRC, 2993.

82

sampling process that draws samples from the underlying population,

Bootstrap suggests that we could resample the 5 samples to generate

Bootstrapped datasets instead of really drawing samples from the underlying

population. The idea seems to be simple but is very effective.

II.2 Theory/Method

The importance of the sampling process to classic statistics: Many

classic statistical theories are built on the sampling process. For example, let’s

consider the estimator of the mean of a normal population. Assume that we

have a random variable 𝑋 that follows a normal distribution, 𝑋~𝑁(𝜇, 𝜎2).

For simplicity, let’s assume that we have known the variance 𝜎2. So we want

to estimate the mean 𝜇. What we need to do is to perform a sampling process,

by randomly drawing a few samples from the distribution. Denote these

samples as 𝑥1, 𝑥2, …, 𝑥𝑛. To estimate 𝜇, it seems natural to use the average

of the samples, denoted as �̅� =
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1 . Thus, we propose to use �̅� as an

estimator of 𝜇, i.e., �̂� = �̅�.

A question arises, how good is �̅� to be an estimator of 𝜇?

To evaluate the uncertainty of the estimated 𝜇 by �̅�, in theory, we need to

repeat the sampling process and the estimation again and again. If �̅� is in

theory a good estimator of 𝜇, then we should be able to repeatedly observe

that �̅� is numerically close to 𝜇 in the replications. Fortunately, when

assuming that 𝑋 follows a normal distribution, we could derive that �̅� is

another normal distribution, �̅�~𝑁(𝜇, 𝜎2 𝑛⁄). Thus, without really doing the

physical experiments to repeat the sampling process and drawing many

samples, we can answer the previous question. First, we know that �̅� is an

unbiased estimator as 𝐸(�̅�) = 𝜇. Also, we know that the larger the sample

size, the better estimation of 𝜇 by �̅�, since the variance of the estimator is

𝜎2 𝑛⁄ . Knowing the analytic form of �̅� is the key here.

Bootstrap – a computational remedy when the sampling process

cannot be analytically articulated: But how about we don’t know what is

Analytics of Small Data

83

the distribution of 𝑋? Then it would make the question difficult to answer as

we don’t know what is the analytic form of �̅�.

Bootstrap provides such a computational remedy that enables us to

investigate the properties of literally any estimator by computationally

mimicking the sampling process. For example, while the distribution of 𝑋 is

unknown, we could follow the Bootstrap scheme illustrated in Figure 4.2 to

evaluate the sampling distribution of �̅�.

Figure 4.2: The (nonparametric) Bootstrap scheme for computationally

evaluating the sampling distribution of �̅�

The Bootstrap scheme illustrated in Figure 4.2 is called nonparametric

Bootstrap since no parametric information is used. This is not the only way

we can conduct Bootstrap for studying the properties of any estimator in the

sampling process. For example, a parametric Bootstrap scheme is illustrated

in Figure 4.3 to perform the same study – to study the sampling distribution

of �̅�. The only difference between the nonparametric Bootstrap scheme in

Figure 4.2 and the parametric Bootstrap scheme in Figure 4.3 is that, when

84

generating new samples, the nonparametric Bootstrap uses the original

dataset while the parametric Bootstrap uses the fitted distribution model.

Figure 4.3: The (parametric) Bootstrap scheme for computationally

evaluating the sampling distribution of �̅�

Bootstrap for regression model: How to evaluate the uncertainties of

the regression parameters using Bootstrap?

In Chapter 2, we showed that by imposing the Gaussian assumptions on

the error term of the regression model, we come to the recognition that the

estimated regression parameters are also random variables, and the

propagation of the uncertainty from the error term to the estimation of the

regression parameters could be analytically articulated due to the benefit of

the linear relationship assumed between predictors and outcome variable. In

summary, the Gaussian assumption and the linear assumptions are critical for

the analytic tractability.

Here, we introduce a more generic approach, based on the idea of

Bootstrap, that could be applied on cases where we don’t have to require

those assumptions. Using Bootstrap to evaluate the linear regression model,

we encounter a variety of options:

Analytics of Small Data

85

Option 1: we could simply resample the data points (i.e., the (𝒙,𝑦) pairs)

similarly as the nonparametric Bootstrap scheme. Then, for each sampled

dataset, we can fit a regression model and obtain the fitted regression

parameters. Suppose we repeat this sampling process 10,000 times, we could

obtain 10,000 set of estimated regression parameters. These could be enough

for us to evaluate the sampling distribution of the regression parameters and

see if the parameters are significantly different from zero.

Option 2: we could simulate new samples of 𝑋 using the nonparametric

Bootstrap method on the samples of 𝑋 only. Then, for the new samples of

𝑋 , we draw samples of 𝑌 using the fitted conditional distribution model

𝑃(𝑌|𝑋) . This is a combination of the nonparametric and parametric

Bootstrap methods to simulate 𝑋 and 𝑌. Then, for each sampled dataset, we

can fit a regression model and obtain the fitted regression parameters.

Option 3: we could fix the 𝑋, only sample for 𝑌. In this way we implicitly

assume that the uncertainty of the dataset mainly comes from 𝑌. To sample

𝑌, we draw samples using the fitted conditional distribution model 𝑃(𝑌|𝑋).

In this way we could also generate many new datasets, such that we can

generate many sets of fitted regression parameters.

The three options above are just some examples. There are other options

that could be developed. As a matter of fact, as a more complicated model

than simple parametric estimation in distribution fitting, how to conduct

Bootstrap on regression models is a challenging problem that demands

solutions from a variety of perspectives bearing different assumptions.

Similarly, Bootstrap for other complex models such as time series models or

decision tree models has demonstrated to be a challenging problem. This will

be further discussed later in this Chapter when introducing the Random

Forest.

II.3 R Lab

In what follows we implement the Bootstrap scheme in statistical tasks

such as parameter estimation, samples comparison, and regression models.

First, let’s load the AD dataset into the R workspace:

86

Dataset of Alzheimer's Disease
Objective: prediction of diagnosis
AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

Let’s pick up the variable HippoNV. The first statistical task we’d like to see

is to estimate the mean of HippoNV in the population under study. Assuming

that the variable HippoNV is distributed as a normal distribution, we could use

the fitdistr() function from the R package “MASS” to estimate the

parameters, mean and standard derivation, as shown in below:

require(MASS)

fit <- fitdistr(AD$HippoNV, densfun="normal")

The fitdistr() function returns the estimated parameters together with

their standard derivation. Note that, here, the standard derivation of the

estimated parameters is derived based on the statistical theory underlying this

estimation, that builds on the assumption of normality of the variable.

fit

mean sd
0.471662891 0.076455789
(0.003362522) (0.002377662)

Figure 4.4: Histogram of HippoNV and its estimated normal curve

Analytics of Small Data

87

To give a visual sense of this estimation, the R code in below shows the

histogram of the variable HippoNV and the normal curve with the estimated

parameters:

hist(AD$HippoNV, pch=20, breaks=25, prob=TRUE, main="")
curve(dnorm(x, fit$estimate[1], fit$estimate[2]), col="red", lwd=
2, add=T)

From Figure 4.4, it seems that the normality assumption is reasonable and

the estimation of the parameters fits the empirical data well.

Now, let’s focus on the question of how uncertain this estimation is. As

we mentioned, the reason that the standard derivation of the estimated

parameters could be provided by calling upon fit() is because the normality

assumption is assumed. If we don’t want to make this assumption, Bootstrap

could be used in a nonparametric way as shown in Figure 4.2. The following

R codes implement the nonparametric Bootstrap for this parameter

estimation problem:

draw R bootstrap replicates
R <- 10000
init location for bootstrap samples
bs_mean <- rep(NA, R)
draw R bootstrap resamples and obtain the estimates
for (i in 1:R) {
 resam1 <- sample(AD$HippoNV, dim(AD)[1], replace = TRUE)
 fit <- fitdistr(resam1 , densfun="normal")
 bs_mean[i] <- fit$estimate[1]
}

Here, 10,000 replications are simulated by the Bootstrap method. The

bs_mean is a vector of 10,000 elements to record all the estimated mean

parameter in these replications. These 10,000 estimated parameters could be

taken as a set of samples. The following R code is used to compute the 95%

CI of the estimated mean.

sort the mean estimates to obtain bootstrap CI
bs_mean.sorted <- sort(bs_mean)
0.025th and 0.975th quantile gives equal-tail bootstrap CI
CI.bs <- c(bs_mean.sorted[round(0.025*R)], bs_mean.sorted[round
(0.975*R+1)])
CI.bs

88

It could be seen that this 95% CI is pretty much close to the 95% CI

provided by theoretical result, showing the validity and efficacy of the

Bootstrap method to evaluate the uncertainty of a statistical operation.

CI.bs

[1] 0.4649877 0.4781062

Figure 4.5: Histogram of the estimated mean parameter of HippoNV by

Bootstrap with 10,000 replications

Figure 4.6: Histograms of HippoNV in the normal and diseased groups

The following R codes draws a histogram of the bs_mean to give us some

visual information about the Bootstrapped estimation of the mean.

Analytics of Small Data

89

Plot the bootstrap distribution with CI
First put data in data.frame for ggplot()
dat.bs_mean <- data.frame(bs_mean)

library(ggplot2)

Warning: package 'ggplot2' was built under R version 3.3.3

p <- ggplot(dat.bs_mean, aes(x = bs_mean))
p <- p + geom_histogram(aes(y=..density..))
p <- p + geom_density(alpha=0.1, fill="white")
p <- p + geom_rug()
vertical line at CI
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash")
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash")
p <- p + labs(title = "Bootstrap distribution of mean estimate of
 HippoNV")
print(p)

And the histogram is shown in Figure 4.5.

While the estimation of the mean of HippoNV is a simple operation, in

what follows we consider a relatively more complex statistical operation,

comparison of the mean parameters of HippoNV across the two classes,

normal and diseased. The following R code creates a temporary dataset for

this purpose.

tempData <- data.frame(AD$HippoNV,AD$DX_bl)
names(tempData) = c("HippoNV","DX_bl")
tempData$DX_bl[which(tempData$DX_bl==0)] <- c("Normal")
tempData$DX_bl[which(tempData$DX_bl==1)] <- c("Diseased")

We then use ggplot() to visualize the two distributions by comparing

their histograms, which is shown in Figure 4.6.

p <- ggplot(tempData,aes(x = HippoNV, colour=DX_bl))
p <- p + geom_histogram(aes(y = ..count.., fill=DX_bl), alpha=0.
5,position="identity")
print(p)

The following R code shows how the nonparametric Bootstrap method

as shown in Figure 4.2 can be implemented here.

draw R bootstrap replicates
R <- 10000

90

init location for bootstrap samples
bs0_mean <- rep(NA, R)
bs1_mean <- rep(NA, R)
draw R bootstrap resamples and obtain the estimates
for (i in 1:R) {
 resam0 <- sample(tempData$HippoNV[which(tempData$DX_bl=="Normal
")],
 length(tempData$HippoNV[which(tempData$DX_bl==
"Normal")]),
 replace = TRUE)
 fit0 <- fitdistr(resam0 , densfun="normal")
 bs0_mean[i] <- fit0$estimate[1]
 resam1 <- sample(tempData$HippoNV[which(tempData$DX_bl=="Diseas
ed")],
 length(tempData$HippoNV[which(tempData$DX_bl==
"Diseased")]),
 replace = TRUE)
 fit1 <- fitdistr(resam1 , densfun="normal")
 bs1_mean[i] <- fit1$estimate[1]
}

bs_meanDiff <- bs0_mean - bs1_mean

sort the mean estimates to obtain bootstrap CI
bs_meanDiff.sorted <- sort(bs_meanDiff)
0.025th and 0.975th quantile gives equal-tail bootstrap CI
CI.bs <- c(bs_meanDiff.sorted[round(0.025*R)], bs_meanDiff.sorted
[round(0.975*R+1)])
CI.bs

Figure 4.7: Histogram of the estimated mean difference of HippoNV in

the two groups by Bootstrap with 10,000 replications

Analytics of Small Data

91

Then, the 95% CI of the difference of the two mean parameters is:

CI.bs

[1] 0.08066058 0.10230428

The following R codes draws a histogram of the bs_meanDiff to give us

some visual information about the Bootstrapped estimation of the mean

difference, which is shown in Figure 4.7.

Plot the bootstrap distribution with CI
First put data in data.frame for ggplot()
dat.bs_meanDiff <- data.frame(bs_meanDiff)

library(ggplot2)
p <- ggplot(dat.bs_meanDiff, aes(x = bs_meanDiff))
p <- p + geom_histogram(aes(y=..density..))
p <- p + geom_density(alpha=0.1, fill="white")
p <- p + geom_rug()
vertical line at CI
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash")
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash")
p <- p + labs(title = "Bootstrap distribution of the estimated me
an difference of HippoNV between normal and diseased")
print(p)

Now let’s implement the Bootstrap on the regression model, a more

complicated statistical operation than the aforementioned two. First, we

recall the use of lm() function to fit the regression model of MMSCORE using

the demographics variables. Note that in this procedure, the standard

derivation of the estimated regression parameters could be derived by theory

(i.e., by assuming the error term is a normal distribution).

Use Bootstrap for multiple regression model
tempData <- data.frame(AD$MMSCORE,AD$AGE, AD$PTGENDER, AD$PTEDUCA
T)
names(tempData) <- c("MMSCORE","AGE","PTGENDER","PTEDUCAT")
lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = temp
Data)
summary(lm.AD_demo)

The fitted regression model is:

92

Call:
lm(formula = MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = tempD
ata)

Residuals:
Min 1Q Median 3Q Max
-8.4290 -0.9766 0.5796 1.4252 3.4539

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.70377 1.11131 24.929 < 2e-16 ***
AGE -0.02453 0.01282 -1.913 0.0563 .
PTGENDER -0.43356 0.18740 -2.314 0.0211 *
PTEDUCAT 0.17120 0.03432 4.988 8.35e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.062 on 513 degrees of freedom
Multiple R-squared: 0.0612, Adjusted R-squared: 0.05571
F-statistic: 11.15 on 3 and 513 DF, p-value: 4.245e-07

Now, let’s discard the assumption of normality of the error term, and use

Bootstrap to induce perturbation into the data and see if the significance of

the estimated parameters could resist this perturbation.

draw R bootstrap replicates
R <- 10000
init location for bootstrap samples
bs_lm.AD_demo <- matrix(NA, nrow = R, ncol = length(lm.AD_demo$co
efficients))
draw R bootstrap resamples and obtain the estimates
for (i in 1:R) {
 resam_ID <- sample(c(1:dim(tempData)[1]), dim(tempData)[1], rep
lace = TRUE)
 resam_Data <- tempData[resam_ID,]
 bs.lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data =
 resam_Data)
 bs_lm.AD_demo[i,] <- bs.lm.AD_demo$coefficients
}

As bs_lm.AD_demo records all the estimated regression parameters in the

10,000 replications, here, for illustration purpose, we can take a look at the

regression coefficient of the variable AGE by the following R code.

bs.AGE <- bs_lm.AD_demo[,2]
sort the mean estimates of AGE to obtain bootstrap CI

Analytics of Small Data

93

bs.AGE.sorted <- sort(bs.AGE)

0.025th and 0.975th quantile gives equal-tail bootstrap CI
CI.bs <- c(bs.AGE.sorted[round(0.025*R)], bs.AGE.sorted[round(0.9
75*R+1)])
CI.bs

Then we can see the 95% CI of AGE is shown in below, which includes 0

in the range. This is consistent with the conclusion made in the

aforementioned analysis which shows that the variable AGE is insignificant

(i.e., p-value=0.0563) by t-test that is based on the normality assumption.

CI.bs

[1] -0.053940482 0.005090523

Figure 4.8: Histogram of the estimated regression parameter of AGE

by Bootstrap with 10,000 replications

The following R codes draws a histogram of the Bootstrapped estimation

of the regression parameter of AGE to give us some visual information about

the Bootstrapped estimation, which is shown in Figure 4.8.

Plot the bootstrap distribution with CI
First put data in data.frame for ggplot()
dat.bs.AGE <- data.frame(bs.AGE.sorted)

library(ggplot2)
p <- ggplot(dat.bs.AGE, aes(x = bs.AGE))
p <- p + geom_histogram(aes(y=..density..))
p <- p + geom_density(alpha=0.1, fill="white")

94

p <- p + geom_rug()
vertical line at CI
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash")
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash")
p <- p + labs(title = "Bootstrap distribution of the estimated re
gression parameter of AGE")
print(p)

Then we can see the 95% CI of PTEDUCAT as shown in below, which is

between 0.1021189 and 0.2429209. This is consistent with the conclusion

made in the aforementioned analysis which shows that the variable PTEDUCAT

is significant (i.e., p-value=8.35e-07) by t-test that is based on the normality

assumption.

bs.PTEDUCAT <- bs_lm.AD_demo[,4]
sort the mean estimates of PTEDUCAT to obtain bootstrap CI
bs.PTEDUCAT.sorted <- sort(bs.PTEDUCAT)

0.025th and 0.975th quantile gives equal-tail bootstrap CI
CI.bs <- c(bs.PTEDUCAT.sorted[round(0.025*R)], bs.PTEDUCAT.sorted
[round(0.975*R+1)])
CI.bs

CI.bs

[1] 0.1021189 0.2429209

Figure 4.9: Histogram of the estimated regression parameter of

PTEDUCAT by Bootstrap with 10,000 replications

Analytics of Small Data

95

The following R codes draws a histogram of the Bootstrapped estimation

of the regression parameter of PTEDUCAT, which is shown in Figure 4.9.

Plot the bootstrap distribution with CI
First put data in data.frame for ggplot()
dat.bs.PTEDUCAT <- data.frame(bs.PTEDUCAT.sorted)

library(ggplot2)
p <- ggplot(dat.bs.PTEDUCAT, aes(x = bs.PTEDUCAT))
p <- p + geom_histogram(aes(y=..density..))
p <- p + geom_density(alpha=0.1, fill="white")
p <- p + geom_rug()
vertical line at CI
p <- p + geom_vline(xintercept=CI.bs[1], colour="blue", linetype=
"longdash")
p <- p + geom_vline(xintercept=CI.bs[2], colour="blue", linetype=
"longdash")
p <- p + labs(title = "Bootstrap distribution of the estimated re
gression parameter of PTEDUCAT")
print(p)

III. Random Forests

III.1 Rationale and Formulation

Building on the decision tree model, a random forest consists of multiple

tree models. There are two main sources for randomness. First, each tree is

built on a randomly selected set of samples by applying Bootstrap on the

original dataset. Second, in building a tree, specifically in splitting a node in

the tree, a subset of features is randomly selected to choose the best split.

Figure 4.10 shows this scheme of random forest.

Random forest is a powerful machine learning method that has gained

superior performances in many practical tasks, including many high-profiled

data competitions over the past few years. It is a simple but effective

mechanism to aggregate many simple models to tackle complex prediction

task. Note that it is not necessary that in machine learning a random put-

together of many simple models would lead to better performance than its

constituting parts. Here we use the following example to show why the

random forest, as a sum, is better than its parts.

96

Figure 4.10: How random forest uses Bootstrap to grow trees

Figure 4.11: A linearly separable dataset with two predictors

The following R code generates a data set with two predictor variables

and a class variable as the outcome variable. As shown in Figure 4.11, the

two classes are separable by a linear boundary.

rm(list = ls(all = TRUE))
require(rpart)
require(dplyr)
require(ggplot2)
require(randomForest)
ndata <- 2000
X1 <- runif(ndata, min = 0, max = 1)

Analytics of Small Data

97

X2 <- runif(ndata, min = 0, max = 1)
data <- data.frame(X1, X2)
data <- data %>% mutate(X12 = 0.5 * (X1 - X2), Y = ifelse(X12 >=
0, 1, 0))
data <- data %>% select(-X12) %>% mutate(Y = as.factor(as.charact
er(Y)))
ggplot(data, aes(x = X1, y = X2, color = Y)) + geom_point() + lab
s(title = "Data points")

Figure 4.12: The decision boundary of one single decision tree

Figure 4.13: The decision boundary of a random forest

98

Both the random forest and the decision tree are applied to the data. The

classification boundaries the models can generate are shown in Figure 4.12

and Figure 4.13, for decision tree and random forest, respectively.

rf_model <- randomForest(Y ~ ., data = data)
tree_model <- rpart(Y ~ ., data = data)

pred_rf <- predict(rf_model, data, type = "prob")[, 1]
pred_tree <- predict(tree_model, data, type = "prob")[, 1]
data_pred <- data %>% mutate(pred_rf_class = ifelse(pred_rf < 0.
5, 0, 1)) %>%
 mutate(pred_rf_class = as.factor(as.character(pred_rf_clas
s))) %>% mutate(pred_tree_class = ifelse(pred_tree <
 0.5, 0, 1)) %>% mutate(pred_tree_class = as.factor(as.charact
er(pred_tree_class)))
ggplot(data_pred, aes(x = X1, y = X2, color = pred_tree_class)) +
 geom_point() +
 labs(title = "Classification boundary from a single decision
tree")

ggplot(data_pred, aes(x = X1, y = X2, color = pred_rf_class)) + g
eom_point() +
 labs(title = "Classification bounday from random forests")

As we can see from Figure 4.12, the classification boundary generated by

the decision tree model has difficult to approximate the linear boundary.

There is an inherent limitation of a tree model to fit smooth boundaries due

to its box-shaped nature resulting from its use of rules to segment the data

space for making predictions. In contrast, the classification boundary of

random forest is much smoother than the one of the decision tree, and is a

better approximation of the linear classification boundary.

III.2 Theory/Method

Pretty much like decision tree, the theoretical line of random forest

follows the algorithmic modeling framework which is very different from the

data modeling framework of the linear regression models. Thus, random

forest is more of a systematically organized set of heuristics, rather than

highly regulated algebraic operations derived from a mathematical

characterization. Motivated by this recognition, we present the process of

random forest using a simple example with the data shown in below.

Analytics of Small Data

99

Table 4.1: An exemplary dataset

ID X1 X2 Class

1 1 1 C0

2 1 0 C1

3 0 1 C1

4 0 0 C0

For random forests with 𝑚 trees, each tree is built on a resampled dataset

that consists of data instances randomly selected from the original data set,

often with the same size as the original data set, sampled with replacement.

As shown in Figure 4.14, the first resampled dataset includes data instances

(represented by their IDs) {1,1,3,4} and is used for building the first tree.

The second resampled dataset includes data instances (represented by their

IDs) {2,3,4,4} and is used for building the second tree. And so on so forth,

until the maximum number of trees is built.

Figure 4.14: Bootstrap a dataset in random forest to build trees

To build the first tree, we begin with the root node that contains {1,1,3,4}.

Then, we need to split the root node and reduce impurity. In the

randomForest R package, the Gini index is used measure impurity. The Gini

index for a data set is defined as

𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑐(1 − 𝑝𝑐)
𝐶
𝑐=1 ,

where 𝐶 is the number the classes in the dataset, and 𝑝𝑐 is the proportion of

data instances that come from the class 𝑐.

100

The Gini index plays the same role as the entropy we have introduced in

Chapter 2. Here, using the following R code, we plot the Gini index and

entropy values versus the percentage of class 1 (for two-class problems) to

see their similarity, as shown in Figure 4.15.

entropy <- function(p_v) {
 e <- 0
 for (p in p_v) {
 if (p == 0) {
 this_term <- 0
 } else {
 this_term <- -p * log2(p)
 }
 e <- e + this_term
 }
 return(e)
}
gini <- function(p_v) {
 e <- 0
 for (p in p_v) {
 if (p == 0) {
 this.term <- 0
 } else {
 this.term <- p * (1 - p)
 }
 e <- e + this.term
 }
 return(e)
}

entropy.v <- NULL
gini.v <- NULL
p.v <- seq(0, 1, by = 0.01)
for (p in p.v) {
 entropy.v <- c(entropy.v, (entropy(c(p, 1 - p))))
 gini.v <- c(gini.v, (gini(c(p, 1 - p))))
}
plot(p.v, gini.v, type = "l", ylim = c(0, 1), xlab = "percentage
of class 1",
 col = "red", ylab = "impurity measure", cex.lab = 1.5, cex.ax
is = 1.5, cex.main = 1.5,
 cex.sub = 1.5)
lines(p.v, entropy.v, col = "blue")
legend("topleft", legend = c("Entropy", "Gini index"), col = c("b
lue", "red"), lty = c(1, 1), cex = 0.8)

Analytics of Small Data

101

It can be seen in Figure 4.15 that the two impurity measures are highly

correlated. Both reach minimum of zero when there is only one class in the

dataset, and maximum when there are equal number of data instances for

different classes. In practice, thus, they produce similar trees.

Figure 4.15: Gini index versus Entropy

Similar as the information gain, the Gini gain can be defined as

∇ 𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 − 𝑤𝑖𝐺𝑖𝑛𝑖𝑖,

where 𝐺𝑖𝑛𝑖 is the Gini index at the node to be split; 𝑤𝑖 and 𝐺𝑖𝑛𝑖𝑖, are the

proportion of samples and the Gini index at the 𝑖𝑡ℎ children node,

respectively.

Back to the example, the Gini index of the root node of the first tree is

calculated as
3

4
∗
1

4
+
1

4
∗
3

4
= 0.375.

The possible splitting rule candidates include four options: 𝑋1 = 0, 𝑋2 =

0, 𝑋1 = 1 and 𝑋2 = 1. Since both variables have two distinct values, both

splitting rules 𝑋1 = 0 and 𝑋1 = 1 will produce the same children nodes, and

both splitting rules 𝑋2 = 0 and 𝑋2 = 1 will produce the same children

nodes. Therefore, we can reduce the possible splitting rule candidates to two:

𝑋1 = 0 and 𝑋2 = 0.

102

Further, as we mentioned earlier in this section, the second source of

randomness in a random forest is to randomly select the variables for splitting

a node. In general, for a data set with 𝑝 predictor variables, √𝑝 variables are

randomly selected for splitting. In our simple example, as there are two

variables, we assume that 𝑋1 is randomly selected for splitting the root node.

Thus, 𝑋1 = 0 is used for splitting the root node which generates the decision

tree model as shown in Figure 4.16.

Figure 4.16: The decision tree with one split

The Gini gain can be calculated as

0.375 − 0.5 ∗ 0 − 0.5 ∗ 0.5 = 0.125.

Let’s continue to grow the tree. Now, at the internal node containing data

{3,4}, assume that 𝑋2 is randomly selected. The node can be further split as

shown in Figure 4.17.

Figure 4.17: The decision tree with two splits

Analytics of Small Data

103

At this point, all nodes cannot be split further, and each leaf node can be

labeled with the majority class of the node such that they become decision

nodes. Thus, the final tree model is shown in Figure 4.18. Applying this

decision tree to the 4 training data points, we can get the error rate as 25%.

Figure 4.18: The final decision tree model with decision nodes

Similarly, the second, third, …, 𝑚𝑡ℎ trees can be built. Usually, in random

forest models, the pruning is not needed. Rather, we control the depth of the

tree models to be created (i.e., use the parameter nodesize in the function

randomForest).

To make a prediction for a data point, each tree makes a prediction for

the data point, and the random forest model combines these predictions and

selects the most popular prediction among all trees as the final prediction.

Note that, each tree in random forests can be weak classifier or even

wrong model. But when in aggregation, the joint predictions become stronger.

In what follows, we apply random forest on the toy example data with

different number of trees. For each random forest model, we run the

experiments 200 times and collect its overall performance using boxplots as

shown in Figure 4.19.

require(dplyr)
require(ggplot2)
require(randomForest)
set.seed(1)
data <- rbind(c("0", "0", "C0"), c("1", "0", "C1"), c("0", "1", "
C1"), c("0",
 "0", "C0")) %>% as.data.frame()
colnames(data) <- c("X1", "X2", "Classs")

104

results <- NULL
for (i in c(1:9, (1:10) * 10)) {
 for (replicate in 1:200) {
 rf.model <- randomForest(Classs ~ ., data = data, ntree =
 i, keep.inbag = TRUE)
 pred.rf <- predict(rf.model, data, type = "class")
 err <- (length(which(pred.rf == data$Classs))/length(data
$Classs))
 results <- rbind(results, c(i, err))
 }
}
colnames(results) <- c("num_trees", "accuracy")
results <- as.data.frame(results) %>% mutate(num_trees = as.chara
cter(num_trees))
levels(results$num_trees) <- unique(results$num_trees)
results$num_trees <- factor(results$num_trees, unique(results$num
_trees))
ggplot() + geom_boxplot(data = results, aes(y = accuracy, x = num
_trees)) +
 geom_point(size = 3)

Figure 4.19: Accuracy versus number of trees in a random forest model

As shown in Figure 4.19, we can notice that when there are a small

number of trees (e.g., smaller than 50), the performance is not stable. When

the number of trees is greater than 50, the accuracy stabilizes. In practice, it

is usually hard to say how many trees are best. Considerable amount of efforts

Analytics of Small Data

105

of model tuning and selection is usually needed to make random forest works

best on a dataset.

III.3 R Lab

We apply both decision tree and random forests to the AD dataset. Half

of the datasets are used for training and the other half for testing. This is run

for 20 times, and the boxplots of the errors from decision tree and random

forests are plotted in Figure 4.20 using the following R code.

library(rpart)
library(dplyr)
library(tidyr)
library(ggplot2)
require(randomForest)
set.seed(1)

theme_set(theme_gray(base_size = 15))

path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]

err.tree <- NULL
err.rf <- NULL
for (i in 1:20) {
 train.ix <- sample(nrow(data), floor(nrow(data)/2))
 tree <- rpart(DX_bl ~ ., data = data[train.ix,])
 pred.test <- predict(tree, data[-train.ix,], type = "class")
 err.tree <- c(err.tree, length(which(pred.test != data[-trai
n.ix,]$DX_bl))/length(pred.test))

 rf <- randomForest(DX_bl ~ ., data = data[train.ix,])
 pred.test <- predict(rf, data[-train.ix,], type = "class")
 err.rf <- c(err.rf, length(which(pred.test != data[-train.ix,
]$DX_bl))/length(pred.test))
}
err.tree <- data.frame(err = err.tree, method = "tree")

106

err.rf <- data.frame(err = err.rf, method = "random_forests")

ggplot() + geom_boxplot(data = rbind(err.tree, err.rf), aes(y = e
rr, x = method)) +
 geom_point(size = 3)

Figure 4.20: Performance of random forest versus tree model on the

AD data

From Figure 4.20 we can see that the error rates of decision tree are higher

than random forests. Now we investigate the impact of the number of trees

and the number of features on the performance of random forest. First, let’s

consider the number of trees (i.e., use the parameter ntree in the function

randomForest). For each number of trees, 20 runs are conducted, and the

boxplots for each setting are shown in Figure 4.21.

library(rpart)
library(dplyr)
library(tidyr)
library(ggplot2)
require(randomForest)
set.seed(1)

theme_set(theme_gray(base_size = 15))

path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))

Analytics of Small Data

107

rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]

results <- NULL
for (itree in c(1:9, 10, 20, 50, 100, 200, 300, 400, 500, 600, 70
0)) {
 for (i in 1:20) {
 train.ix <- sample(nrow(data), floor(nrow(data)/2))
 rf <- randomForest(DX_bl ~ ., ntree = itree, data = data
[train.ix,])
 pred.test <- predict(rf, data[-train.ix,], type = "class
")
 this.err <- length(which(pred.test != data[-train.ix,]$D
X_bl))/length(pred.test)
 results <- rbind(results, c(itree, this.err))
 # err.rf <- c(err.rf, length(which(pred.test !=
 # data[-train.ix,]$DX_bl))/length(pred.test))
 }
}

colnames(results) <- c("num_trees", "error")
results <- as.data.frame(results) %>% mutate(num_trees = as.chara
cter(num_trees))
levels(results$num_trees) <- unique(results$num_trees)
results$num_trees <- factor(results$num_trees, unique(results$num
_trees))
ggplot() + geom_boxplot(data = results, aes(y = error, x = num_tr
ees)) + geom_point(size = 3)

Figure 4.21: Error versus number of trees in a random forest model

108

Figure 4.22: Error versus number of features in a random forest model

It can be seen in Figure 4.21 that, when the number of trees is small,

particularly less than 10, the improvement on prediction performance of

random forest is substantial with additional trees added. However, the error

rates become stable after the number of trees reaches 100.

Next, let’s consider the number of features (i.e., use the parameter mtry

in the function randomForest). Here, 100 trees are used. For each number of

features, 20 runs are conducted, and the boxplots for each setting are shown

in Figure 4.22. It can be seen that the error rates are not significantly different

when the number of features changes.

library(rpart)
library(dplyr)
library(tidyr)
library(ggplot2)
require(randomForest)
set.seed(1)
theme_set(theme_gray(base_size = 15))
path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE

Analytics of Small Data

109

"))
data <- data[, -rm_indx]
nFea <- ncol(data) - 1
results <- NULL
for (iFeatures in 1:nFea) {
 for (i in 1:20) {
 train.ix <- sample(nrow(data), floor(nrow(data)/2))
 rf <- randomForest(DX_bl ~ ., mtry = iFeatures, ntree = 1
00, data = data[train.ix,
])
 pred.test <- predict(rf, data[-train.ix,], type = "class
")
 this.err <- length(which(pred.test != data[-train.ix,]$D
X_bl))/length(pred.test)
 results <- rbind(results, c(iFeatures, this.err))
 # err.rf <- c(err.rf, length(which(pred.test !=
 # data[-train.ix,]$DX_bl))/length(pred.test))
 }
}

colnames(results) <- c("num_features", "error")
results <- as.data.frame(results) %>% mutate(num_features = as.ch
aracter(num_features))
levels(results$num_features) <- unique(results$num_features)
results$num_features <- factor(results$num_features, unique(resul
ts$num_features))
ggplot() + geom_boxplot(data = results, aes(y = error, x = num_fe
atures)) +
 geom_point(size = 3)

110

Figure 4.23: Error versus node size in a random forest model

Further, we experiment with the minimum node size (i.e., use the

parameter nodesize in the function randomForest), that is, the minimum

number of instances at a node. This is a parameter to control the depth of

the trees. Again, each setting is run 20 times and boxplots of their

performances are shown in Figure 4.23.

library(dplyr)
library(tidyr)
library(ggplot2)
require(randomForest)
set.seed(1)

theme_set(theme_gray(base_size = 15))

path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]

results <- NULL
for (inodesize in c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 5
0, 60, 70, 80,
 90, 100)) {
 for (i in 1:20) {
 train.ix <- sample(nrow(data), floor(nrow(data)/2))
 rf <- randomForest(DX_bl ~ ., ntree = 100, nodesize = ino
desize, data = data[train.ix,
])
 pred.test <- predict(rf, data[-train.ix,], type = "class
")
 this.err <- length(which(pred.test != data[-train.ix,]$D
X_bl))/length(pred.test)
 results <- rbind(results, c(inodesize, this.err))
 # err.rf <- c(err.rf, length(which(pred.test !=
 # data[-train.ix,]$DX_bl))/length(pred.test))
 }
}

Analytics of Small Data

111

colnames(results) <- c("min_node_size", "error")
results <- as.data.frame(results) %>% mutate(min_node_size = as.c
haracter(min_node_size))
levels(results$min_node_size) <- unique(results$min_node_size)
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size))
ggplot() + geom_boxplot(data = results, aes(y = error, x = min_no
de_size)) +
 geom_point(size = 3)

It can be seen that, the error rates start to rise when the minimum node

size equals to 40. And the error rates are not substantially different when the

minimum node size is less than 40. More importantly, this shows that a fully-

grown tree, that is, the tree with a minimum node size as 1, does not hurt the

accuracy performance of random forests.

III.4 Remarks

Random forest provides a great example to show when randomness

should be consciously introduced into the model to boost its performance.

This seems to be counterintuitive, as a model is supposed to characterize

randomness and extract the constancy out of randomness. Actually, the

randomness in the random forest, enabled by the use of Bootstrap to

randomize choices of data instances and the use of random feature selection

for building trees, is the key for its success. We provide an intuitive

explanation that, why random forests work better than a single decision tree

with the introduction of these randomness. Assuming that the trees in

random forests are independent, and each tree has an accuracy of 0.6. For

100 trees, the probability of random forests to make the right prediction

reaches as high as 0.97:

∑ 𝐶(𝑛, 𝑘) ∗100
𝑘=51 0.6𝑘 ∗ 0.4100−𝑘.

Note that, the assumption of the independency between the trees in

random forests is the key here. This does not hold in reality in a strict sense.

However, the randomness added to each tree makes them less correlated.

112

IV. Exercises

Data analysis

1. Use AGE as the new outcome variable. Build a random forest model

to predict it. Identify the final models you would select, evaluate the

model, and compare it with the decision tree model.

2. Find two datasets from the UCI data repository or R datasets.

Conduct a detailed analysis for both datasets using the random forest

model. Also comment on the application of your model on the

context of the dataset you have selected.

3. Pick up any dataset you have used, and randomly split the data into

two halves. Use one half to build the random forest model. Test the

model’s prediction performance on the second half. Report what

you have found, adjust your way of model building, and suggest a

strategy to find the model you consider as the best.

Programming

4. Write your own R script to use Bootstrap to evaluate the significance

of the regression parameters of logistic regression model. Compare

your results with the output from glm().

5. Write your own R script to implement the random forest algorithm.

Use any dataset, compare the output from your script with the

output from randomForest().

6. Based on your script in 5, replace the decision tree model with

logistic regression model, to generate a “random forest of logistic

regression” model. Compare its performance with random forest on

some datasets you have worked on.

Analytics of Small Data

113

CHAPTER 5: PERFORMANCE
CROSS VALIDATION AND OOB

I. Overview

Chapter 5 is about “Performance”. This is often a concept that seems to

be self-evident, and therefore, ignored by people to give further consideration.

A model performs well – what does that mean anyway?

For example, let’s consider the prediction of a rare disease. By statistics it

has been known that only 0.001% of the population of the United States have

this disease. The Center of Disease Control (CDC) now hires a data analytics

expert to build a model, and it is said that the model can achieve a prediction

accuracy as high as 90%. Isn’t this a good model? However, it is easy to beat

this performance, if we consider a very trivial model that simply predicts all

the upcoming cases as negative (no disease). Wouldn’t this trivial model

achieve a prediction accuracy as high as 99.999%?

Now let’s look at another example. Figure 5.1 shows three models to fit

the same dataset that has two classes of data points. The first model is a linear

model (𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2) with a straight line as the decision

114

boundary. Obviously, this model has its inherent limitation such that many

data points have to be misclassified with a linear line. To add in some

curvature into the decision boundary justified by the nonlinear shape of the

two classes’ boundaries, some second order terms and an interaction term of

the two predictors are introduced to the model (𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽12𝑥1𝑥2), giving rise to the model shown in the

middle panel of Figure 5.1. While this improved model still could not classify

the two classes completely, more interaction terms defined on the predictors

are introduced into the model (𝑓(𝒙) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽11𝑥1
2 +

𝛽22𝑥2
2 + 𝛽12𝑥1𝑥2 + 𝛽112𝑥1

2𝑥2 + 𝛽122𝑥1𝑥2
2 +⋯). As shown in the right

panel of Figure 5.1, this model can achieve 100% of prediction accuracy.

Figure 5.1: Three models to fit a dataset

The three models in Figure 5.1, from left to right, illustrates “underfit”,

“good fit”, and “overfit”, respectively. The underfit model, apparently, fails

to incorporate something systematical in the dataset to help classify the two

classes. The overfit model allows the noises to affect the model. Noises, by

definition, only happen by accident. While the model, by definition, is to

generalize the constancy of the data rather than its unrepeatable randomness.

A dataset could be randomly generated, but the mechanism of generating the

randomness is the constancy, as revealed in many phenomena such as

Brownian motion. Thus, the model in the middle panel of Figure 5.1 seems

Analytics of Small Data

115

to be able to maintain a balance, using the structural constancy in the data to

form the model, while resisting the suspicious noises in the data.

A similar study could be conducted on regression problems. As we have

mentioned in Chapter 2, the metric R-squared is used to measure the

goodness-of-fit of the regression model on training data. Look at the

definition of the R-squared,

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
.

Here, SST is the total sum of squares, SSE is the residual sum of squares,

and it is known that SST-SSE is the explained sum of squares by the model.

Thus, 𝑅2 higher the better, meaning more variance in the data could be

explained by the model. However, on the other hand, we can see that SST is

always fixed, while SSE could only decrease if more variables are put into the

model even if these new added variables have no relationship with the

outcome variable.

Further, the R-squared is compounded by the variance of predictors as

well. As the underlying regression model is

𝑌 = 𝛽𝑋 + 𝜖,

the variance of 𝑌, 𝑣𝑎𝑟(𝑌) = 𝛽2𝑣𝑎𝑟(𝑋) + 𝑣𝑎𝑟(𝜖). The R-squared takes the

form as

R-squared=
𝛽2𝑣𝑎𝑟(𝑋)

𝛽2𝑣𝑎𝑟(𝑋)+𝑣𝑎𝑟(𝜖)
.

Thus, it seems that R-squared is not only impacted by how well 𝑋 can

predict 𝑌, but also by the variance of 𝑋 as well.

Thus, the drawback of using R-squared is that it doesn’t account for

model complexity. The adjusted R-squared was developed to provide a

remedy for this. Some other criteria such as the AIC and BIC were also

developed which have a good balance between the model fit (just like R-

116

squared) and model complexity (i.e., how many predictors are used in the

model).

II. Cross-Validation

II.1 Rationale and Formulation

The examples shown above collectively point out the complexity of

defining the performance of a model and the danger of evaluating the

performance of a model using training data. To solve this problem, a

common strategy is to look at multiple dimensions of the performance of a

model, and use cross-validation to obtain the performance metrics on a

validation dataset that is not used in model training. The ideal situation is that,

there is a training dataset to train the model and an independent testing

dataset to validate the model. The testing dataset should not be available

when training the model, which is the key for validation purpose. Thus, in

training the model with a given dataset, we need to try our best to make sure

the model can perform well on the testing dataset. Cross-validation serves

this purpose to train the model without accessibility to a testing dataset. The

only information that the cross-validation uses, which is really an assumption,

is that the testing dataset and the training dataset are randomly generated by

the same distribution. With a given dataset to train the model, the cross-

validation techniques mimic the ideal situation, aim to predict the model’s

success on the unseen testing datasets as its ultimate goal.

II.2 Theory/Method

The first approach, probably the simplest one, is the “hold-out” method.

With a given dataset, the hold-out method further divides the given dataset

into two parts, a training dataset and a testing dataset. Then, the model is

trained on the training dataset. Its performance is evaluated on the testing

dataset. Note that, when deciding on the final model that will be used on the

testing dataset to obtain its performance, the testing dataset could not be used

Analytics of Small Data

117

to guide the model selection on the training stage. In other words, the testing

dataset is simply for evaluation only.

Figure 5.2: The hold-out method

Figure 5.3: The random sampling method

Figure 5.4: The K-fold cross-validation method (here, K=4)

The hold-out method is simple but is criticized for its one-time division

of the dataset into two parts, which maybe prone to random errors. Thus,

the random sampling method suggests to repeat this division process many

times, i.e., as shown in Figure 5.3, the process is repeated 3 times. For each

time, the model training and selection only use the training dataset, and the

118

model evaluation only uses the testing dataset. The performance of the model

on the three experiments could be reported either in average or in a boxplot

that shows both the average performance and its variance.

Somehow like a mix of the random sampling method and the hold-out

method, the K-fold cross-validation method suggests to first divide the

dataset into K folds, and then, train the model using K-1 folds of the dataset

and test the model using the remaining fold. This process could be repeated

K times. The performance of the model on the experiments could be

reported either in average or in a boxplot that shows both the average

performance and its variance.

II.3 R Lab

The R lab in this section is built on the script provided in malanor.net1.

Here, we simulate a simple dataset with one predictor and outcome variable.

We use the ns() function to simulate the relationship between the two

variables, which can generate the B-spline basis matrix for natural cubic

splines. The nice merit of using this method is that the relationship between

the two variables should be more complex than linear, but the complexity is

controlled by the degree of freedom (df) parameter, i.e., the larger the df, the

more complex the relationship. Thus, the complexity of the relationship is

quantitatively characterized on a continuum.

Write a nice simulator to generate dataset with one predictor a
nd one outcome
from a polynomial regression model
seed <- rnorm(1)
set.seed(seed)
gen_data <- function(n, coef, v_noise) {
 eps <- rnorm(n, 0, v_noise)
 x <- sort(runif(n, 0, 100))
 X <- cbind(1,ns(x, df = (length(coef) - 1)))
 y <- as.numeric(X %*% coef + eps)
 return(data.frame(x = x, y = y))
}

1 http://www.milanor.net/blog/cross-validation-for-predictive-analytics-using-

r/

Analytics of Small Data

119

The dataset that is generated by the R code showing above is presented

in Figure 5.5, as the scattered data points.

Figure 5.5: The simulated data from a nonlinear regression model with

B-spline basis matrix (df = 4), and various fitted models with different

degree of freedoms

We then fit the data with a variety of models, starting from df =1

(corresponds to the linear model) to df =20.

Fit the data using different models with different degrees of f
reedom (df)
install.packages("splines")
require(splines)

Loading required package: splines

Simulate one batch of data, and see how different model fits wi
th df from 1 to 50

n_train <- 100
coef <- c(-0.68,0.82,-0.417,0.32,-0.68)
v_noise <- 0.2
n_df <- 20
df <- 1:n_df
tempData <- gen_data(n_train, coef, v_noise)

x <- tempData[, "x"]
y <- tempData[, "y"]

120

fit <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df = degf)))

Plot the data
x <- tempData$x
X <- cbind(1, ns(x, df = (length(coef) - 1)))
y <- tempData$y
plot(y ~ x, col = "gray", lwd = 2)
lines(x, X %*% coef, lwd = 3, col = "black")
lines(x, fitted(fit[[1]]), lwd = 3, col = "darkorange")
lines(x, fitted(fit[[4]]), lwd = 3, col = "dodgerblue4")
lines(x, fitted(fit[[10]]), lwd = 3, col = "darkorange")
lines(x, fitted(fit[[20]]), lwd = 3, col = "forestgreen")
legend(x = "topleft", legend = c("True function", "Linear fit (df
 = 1)", "Best model (df = 4)", "Overfitted model (df = 15)",
 "Overfitted model (df = 20)"), l
wd = rep(3, 4), col = c("black", "darkorange", "dodgerblue4",

 "forestgreen"), text.width = 32, cex = 0.
85)

As shown in Figure 5.5, the linear model obviously underfits the data as

it lacks the flexibility to characterize the complexity sufficiently. The model

that has df =20 overfits the data, evidenced by its complex shape with many

change points, up and downs. As we know that the underlying true model is

smooth, the model with df=20 tries too hard to fit the local patterns that

were only induced by noise.

Note that, in this example, we have known that the true df is 4, which

helps us to recognize the overfitted and underfitted models. In reality, we

don’t have this knowledge, so it is dangerous to keep increasing the model

complexity to aggressively pursue the accuracy performance on the training

data. To see the danger, let’s do another experiment.

First, we use the following R code to generate test data from the same

distribution of the training data.

Generate test data from the same model
n_test <- 50
xy_test <- gen_data(n_test, coef, v_noise)

Analytics of Small Data

121

Then, we fit the same set of models from linear to df=20 using the

training dataset. And we compute the prediction errors of these models using

the training dataset and testing dataset separately.

Compute the training and test errors for each model
mse <- sapply(fit, function(obj) deviance(obj)/nobs(obj))
pred <- mapply(function(obj, degf) predict(obj, data.frame(x = xy
_test$x)),
 fit, df)
te <- sapply(as.list(data.frame(pred)), function(y_hat) mean((xy_
test$y - y_hat)^2))

Figure 5.6: Prediction errors of the models (from df=0 to df=20) on the

training dataset and testing data

The following R code is used to draw the Figure 5.6.

Plot the errors
plot(df, mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Predi
ction error",
 xlab = "The degrees of freedom (logged) of the model", ylim
= c(0.9*min(mse), 1.1*max(mse)), log = "x")

lines(df, te, lwd = 2, col = "orange3")

points(df[1], mse[1], col = "palegreen3", pch = 17, cex = 1.5)
points(df[1], te[1], col = "palegreen3", pch = 17, cex = 1.5)
points(df[which.min(te)], mse[which.min(te)], col = "darkorange",
 pch = 16,
 cex = 1.5)
points(df[which.min(te)], te[which.min(te)], col = "darkorange",

122

pch = 16,
 cex = 1.5)
points(df[15], mse[15], col = "steelblue", pch = 15, cex = 1.5)
points(df[15], te[15], col = "steelblue", pch = 15, cex = 1.5)
legend(x = "center", legend = c("Training error", "Test error"),
lwd = rep(2, 2),
 col = c(gray(0.4), "orange3"), text.width = 0.3, cex = 1.
2)

As we can see from Figure 5.6, the prediction error on the training dataset

keeps decreasing with the increase of the df. This is consistent with our

theory, and it is important to keep in mind that this triumph of model

complexity doesn’t really mean what it seems. It only indicates a universal

phenomenon that a more complex model can fit the data better. On the other

hand, we could observe that the testing error curve shows a U-shape curve,

indicating an optimal model could be identified in the examined spectrum of

model complexity.

Figure 5.7: Prediction errors of the models (from df=0 to df=20) on the

training dataset and testing data of 100 replications. The two highlighted

curves represent the mean curves of the 100 replications of the training and

testing error curves, respectively

Analytics of Small Data

123

The following R code repeats this experiment 100 times and present the

results in Figure 5.7.

Repeat the above experiments in 100 times
n_rep <- 100
n_train <- 50
coef <- c(-0.68,0.82,-0.417,0.32,-0.68)
v_noise <- 0.2
n_df <- 20
df <- 1:n_df
xy <- res <- list()
xy_test <- gen_data(n_test, coef, v_noise)
for (i in 1:n_rep) {
 xy[[i]] <- gen_data(n_train, coef, v_noise)
 x <- xy[[i]][, "x"]
 y <- xy[[i]][, "y"]
 res[[i]] <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df = de
gf)))
}

Compute the training and test errors for each model
pred <- list()
mse <- te <- matrix(NA, nrow = n_df, ncol = n_rep)
for (i in 1:n_rep) {
 mse[, i] <- sapply(res[[i]], function(obj) deviance(obj)/nobs(o
bj))
 pred[[i]] <- mapply(function(obj, degf) predict(obj, data.frame
(x = xy_test$x)),
 res[[i]], df)
 te[, i] <- sapply(as.list(data.frame(pred[[i]])), function(y_ha
t) mean((xy_test$y -

 y_hat)^2))
}

Compute the average training and test errors
av_mse <- rowMeans(mse)
av_te <- rowMeans(te)

Plot the errors
plot(df, av_mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Pr
ediction error",
 xlab = "The degrees of freedom (logged) of the model", ylim
= c(0.7*min(mse), 1.4*max(mse)), log = "x")
for (i in 1:n_rep) {
 lines(df, te[, i], col = "lightyellow2")

124

}
for (i in 1:n_rep) {
 lines(df, mse[, i], col = gray(0.8))
}
lines(df, av_mse, lwd = 2, col = gray(0.4))
lines(df, av_te, lwd = 2, col = "orange3")
points(df[1], av_mse[1], col = "palegreen3", pch = 17, cex = 1.5)
points(df[1], av_te[1], col = "palegreen3", pch = 17, cex = 1.5)
points(df[which.min(av_te)], av_mse[which.min(av_te)], col = "dar
korange", pch = 16,
 cex = 1.5)
points(df[which.min(av_te)], av_te[which.min(av_te)], col = "dark
orange", pch = 16,
 cex = 1.5)
points(df[20], av_mse[20], col = "steelblue", pch = 15, cex = 1.
5)
points(df[20], av_te[20], col = "steelblue", pch = 15, cex = 1.5)
legend(x = "center", legend = c("Training error", "Test error"),
lwd = rep(2, 2),
 col = c(gray(0.4), "darkred"), text.width = 0.3, cex = 0.8
5)

Next, let’s see how well the cross-validation could help to overcome the

danger of overfitting. Let’s consider the scenario that only the 100 samples

are provided to us for both model training and testing. Thus, we use the 10-

folder cross-validation on the 100 samples, using the following R code, to

train the model.

Cross-validation
set.seed(seed)

n_train <- 100
xy <- gen_data(n_train, coef, v_noise)
x <- xy$x
y <- xy$y

fitted_models <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df =
 degf)))
mse <- sapply(fitted_models, function(obj) deviance(obj)/nobs(ob
j))

n_test <- 10000
xy_test <- gen_data(n_test, coef, v_noise)
pred <- mapply(function(obj, degf) predict(obj, data.frame(x = xy
_test$x)),
 fitted_models, df)

Analytics of Small Data

125

te <- sapply(as.list(data.frame(pred)), function(y_hat) mean((xy_
test$y - y_hat)^2))

n_folds <- 10
folds_i <- sample(rep(1:n_folds, length.out = n_train))
cv_tmp <- matrix(NA, nrow = n_folds, ncol = length(df))
for (k in 1:n_folds) {
 test_i <- which(folds_i == k)
 train_xy <- xy[-test_i,]
 test_xy <- xy[test_i,]
 x <- train_xy$x
 y <- train_xy$y
 fitted_models <- apply(t(df), 2, function(degf) lm(y ~ ns(x, df
 = degf)))
 x <- test_xy$x
 y <- test_xy$y
 pred <- mapply(function(obj, degf) predict(obj, data.frame(ns
(x, df = degf))),
 fitted_models, df)
 cv_tmp[k,] <- sapply(as.list(data.frame(pred)), function(y_ha
t) mean((y -

 y_hat)^2))
}
cv <- colMeans(cv_tmp)

Figure 5.8: Prediction errors of the models (from df=0 to df=20) on the

training dataset without cross-validation, on the training dataset using 10-

folder cross-validation, and testing data of 50 samples.

126

Then we can visualize the result in Figure 5.8. Note that, in Figure 5.8, we

overlay the result of the 10-folder cross-validation (based on the 100 samples)

with the prediction error on a separate testing dataset (extra 50 samples) to

get an idea how close the 10-folder cross-validation can match the ideal case

with an extra batch of testing data.

install.packages("Hmisc")
require(Hmisc)

plot(df, mse, type = "l", lwd = 2, col = gray(0.4), ylab = "Predi
ction error",
 xlab = "The degrees of freedom (logged) of the model", main
= paste0(n_folds,

 "-fold Cross-Validation"), ylim = c(0.8*min(ms
e), 1.2*max(mse)), log = "x")
lines(df, te, lwd = 2, col = "orange3", lty = 2)
cv_sd <- apply(cv_tmp, 2, sd)/sqrt(n_folds)
errbar(df, cv, cv + cv_sd, cv - cv_sd, add = TRUE, col = "steelbl
ue2", pch = 19,
 lwd = 0.5)
lines(df, cv, lwd = 2, col = "steelblue2")
points(df, cv, col = "steelblue2", pch = 19)
legend(x = "topright", legend = c("Training error", "Test error",
 "Cross-validation error"),
 lty = c(1, 2, 1), lwd = rep(2, 3), col = c(gray(0.4), "dar
kred", "steelblue2"),
 text.width = 0.4, cex = 0.85)

As shown in Figure 5.8, the 10-folder cross-validation could generate fair

evaluation of the models just like an independent unseen testing dataset.

Although its estimation of the error is smaller than the error estimation on

the testing dataset, it could capture the change point of model complexity

beyond which the model starts to overfit the data. Thus, it could be used to

identify a good model that fits the data well, without overfitting.

Now let’s apply the idea of 10-folder cross-validation on the AD data, for

building a linear regression model with the demographic variables.

Dataset of Alzheimer's Disease
Objective: prediction of diagnosis
filename
AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

Analytics of Small Data

127

fit a model with demographics only
lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = AD)
summary(lm.AD_demo)

n_folds <- 10
folds_i <- sample(rep(1:n_folds, length.out = dim(AD)[1]))
cv_tmp <- matrix(NA, nrow = n_folds, 1)
cv_err <- matrix(NA, nrow = 50*n_folds,2)
for (k in 1:n_folds) {
 test_i <- which(folds_i == k)
 train_xy <- AD[-test_i,]
 test_xy <- AD[test_i,]
 y <- test_xy$MMSCORE
 lm.AD_demo <- lm(MMSCORE ~ AGE + PTGENDER + PTEDUCAT, data = tr
ain_xy)
 pred <- predict(lm.AD_demo,test_xy)
 cv_tmp[k] <- mean((y - pred)^2)
 temp <- y - pred
 cv_err[(1+((k-1)*50)):(k*50),1] = rep(k,50)
 cv_err[(1+((k-1)*50)):(k*50),2] <- temp[1:50]
}

Figure 5.9: Prediction errors of the linear regression model using 10-folder

cross-validation

We can use the boxplot to draw the distribution of the prediction errors

(evaluated by MSE) collected by the 10-folder cross-validation, shown in

Figure 5.9:

128

library(ggplot2)
p <- ggplot(data.frame(cv_tmp),aes(x=factor(""),y=cv_tmp))+geom_b
oxplot()+ xlab("") ## box plot
p <- p + labs(title="MSE of lm.AD_demo by 10-folder Cross Validat
ion")
print(p)

Further, while it is not usual in applications to see the prediction errors

within the folders, here, it is of interest to present this intermediate result to

gain a visual understanding of cross-validation. The R code below draws the

boxplots of the prediction errors of the 10 folders, shown in Figure 5.10.

Visualize the distributions of the prediction errors in the fol
ders
cv_err <- data.frame(cv_err)
names(cv_err) = c("Folder","Error")
ggplot(data = cv_err, aes(x = Folder, y = Error)) +
 geom_boxplot(aes(colour=factor(Folder)), fill=NA) +
 geom_point(aes(color = factor(Folder)))

Figure 5.10: Prediction errors of the linear regression model using 10-

folder cross-validation; each boxplot corresponds to one folder

Analytics of Small Data

129

II.4 Remarks

More about cross-validation: Usually, there is a relationship between

the performance of the model on training dataset and its performance on

testing dataset, as shown in Figure 5.11. Note that this relationship is

theoretical, but has very high relevance with real applications. In our

experiments, as shown in Figures 5.6 and 5.7, we have seen this relationship.

This relationship predicts that, while the performance on the training data

will decrease if we increase the model complexity, at a certain point, the gain

on performance by increasing model complexity will stop. Beyond this point,

the performance would be worse. Thus, a model that has a good performance

on the training data and a reasonable complexity is likely to be among the

best models that will perform well on the testing data (unseen).

Figure 5.11: A theoretical relationship between the performance of the

model on training dataset and its performance on testing dataset

The ROC curve: While cross-validation is useful for estimating the

model’s performance on unseen testing data, it still needs evaluation metrics

to evaluate the model’s performance. In some applications such as the rare

disease example mentioned earlier in this chapter, how to evaluate the

performance of a model itself could be a complex issue.

There have been many performance metrics developed in the literature.

An important one, for classification problem, is the ROC curve. As we have

130

seen the limitation of merely using accuracy as the performance metric of a

classification model, the ROC has been commonly used as a better metric.

The ROC stands for Receiver Operating Characteristics. As in a binary

classification problem that there are two classes, we often care about

accuracies of prediction on both classes. If the classification problem is in a

medical application, one class represents disease (positive) while another one

represents normal (negative), then we may further name the correct

prediction on a positive case as true positive (TP) and name the correct

prediction on a negative case as true negative (TN). Correspondingly, we

can define the false positive (FP) as incorrect prediction on a positive case

and false negative (FN) as incorrect prediction on a negative case. This is

summered in the following table:

Table 5.1: The confusion matrix

The confusion

matrix

Reality

Positive Negative

M
o

d
e
l

P
re

d
ic

ti
o

n

P
o

si
ti

ve

True positive (TP) False positive (FP)

N
eg

at
iv

e

False negative

(FN)

True negative

(TN)

Now, recall that, in a logistic regression model, before we reach the

endpoint of the model that is binary prediction, we obtain the intermediate

result 𝑝(𝒙) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑝
𝑖=1

)
. Then, a cut-off value (e.g., 0.5) is used to

classify the cases whose 𝑝(𝒙) is larger than the cut-off value as one class and

Analytics of Small Data

131

otherwise as another class. This means that, for each cut-off value, we can

obtain a confusion matrix with different values on the TP and FP. This is

shown in Figure 5.12.

Figure 5.12: For a logistic regression model of two classes, the logistic

model can produce the intermediate results 𝑝(𝒙) for the cases of both

classes. (a) shows the distributions of 𝑝(𝒙) of both classes and a particular

cut off value; (b) shows the corresponding confusion matrix; (c) shows the

ROC curve that synthesizes all the scenarios of all cut off values

As we can see from Figure 5.12, the ROC curve is a succinct way to

synthesizes all the scenarios of all cut-off values. Thus, it provides a more

holistic way to evaluate a model (actually, more about to evaluate the potential

of a model). A model that lacks potential for prediction will be close to the

45o line, representing random guess on both classes. A better model will

show a ROC curve that is closer to the upper left corner point.

Based on ROC, a metric that is named the AUC (the area under the curve)

is proposed to summarize the ROC curve of a model. The higher the AUC,

the better the model.

In what follows we show how to derive these performance metrics using

the logistic regression model. First, let’s build a logistic regression model

using the AD data as what we have done in Chapter 3.

132

ROC and more performance metrics of logistic regression model
Load the AD dataset
AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

Split the data into training and testing sets
n = dim(AD)[1]
n.train <- floor(0.8 * n)
idx.train <- sample(n, n.train)
AD.train <- AD[idx.train,]
AD.test <- AD[-idx.train,]

Automatic selection of the model
logit.AD.full <- glm(DX_bl ~ ., data = AD.train[,c(1:16)], family
 = "binomial")
logit.AD.final <- step(logit.AD.full, direction="both", trace =
0)
summary(logit.AD.final)

Then, we can use the function, confusionMatrix() from the R package

“e1071” to derive the performance metrics:

install.packages("e1071")
require(e1071)

require(caret)

Prediction scores
pred = predict(logit.AD.final, newdata=AD.test,type="response")
confusionMatrix(data=factor(pred>0.5), factor(AD.test[,1]==1))

The results are shown in below:

Confusion Matrix and Statistics

Reference
Prediction FALSE TRUE
FALSE 48 7
TRUE 7 42

Accuracy : 0.8654
95% CI : (0.7845, 0.9244)
No Information Rate : 0.5288
P-Value [Acc > NIR] : 3.201e-13

Kappa : 0.7299
Mcnemar's Test P-Value : 1

Analytics of Small Data

133

Sensitivity : 0.8727
Specificity : 0.8571
Pos Pred Value : 0.8727
Neg Pred Value : 0.8571
Prevalence : 0.5288
Detection Rate : 0.4615
Detection Prevalence : 0.5288
Balanced Accuracy : 0.8649

'Positive' Class : FALSE

The ROC curve could be drew using the R Package “ROCR”:

Generate the ROC curve using the testing data
Compute ROC and Precision-Recall curves
require('ROCR')

linear.roc.curve <- performance(prediction(pred, AD.test[,1]),
 measure='tpr', x.measure='fpr')
plot(linear.roc.curve, lwd = 2, col = "orange3",
 main = "Validation of the logistic model using testing data
")

The ROC curve is shown in Figure 5.13.

Figure 5.13: ROC curve of the logistic regression model

134

III. Out-of-bag error in Random Forest

III.1 Rationale and Formulation

The out-of-bag (OOB) error in a random forest model provides a

computationally convenient approach to evaluate the model without using a

testing dataset, neither a cross-validation procedure. Recall that, for a random

forest model with 𝐾 trees, each tree is built on a bootstrapped dataset from

the original training set 𝑆. There are totally 𝐾 bootstrapped datasets, denoted

as 𝐵1,𝐵2, … , 𝐵𝐾.

Figure 5.14: The framework of random forest

As the size of each bootstrapped dataset is the same size (denoted as 𝑁)

as the original training data, and each data point in the bootstrapped dataset

is selected independently from other data points, therefore, the probability of

a data point from the training data is missing from a bootstrapped dataset is

(1 −
1

𝑁
)
𝑁

.

When 𝑁 is sufficiently large, we can have

𝑙𝑖𝑚𝑁→∞ (1 −
1

𝑁
)
𝑁
= 𝑒−1 ≈ 0.37.

Analytics of Small Data

135

Therefore, roughly 37% of the data points from 𝑆 are not contained in

any bootstrapped dataset 𝐵𝑖 , and thus, not used for training tree 𝑖. These

excluded data points are referred as the out-of-bag samples for the

bootstrapped dataset 𝐵𝑖 and tree 𝑖 . Note that when 𝑁 is small, the

probability of a data point missing from a bootstrapped dataset is smaller,

e.g., the probability becomes 0 when 𝑁 = 1, and 1/4 when 𝑁 = 2.

As there are 37% of probability that a data point is not used for training

a tree, we can infer that, a data point is not used for training about 37% of

the trees. Therefore, for each data point, in theory, there are 37% of trees

trained without this data point. These trees can be used to predict on this

data point, which can be considered as testing an unseen data point. The out-

of-bag error estimation can then be calculated by aggregating the out-of-bag

testing error of all the data points. The out-of-bag error can be calculated

after random forests are built, and are significantly less computationally than

cross-validation. Note that the out-of-bag estimates are calculated by 37% of

the trees in the random forest model, therefore, it is expected that the full

random forest model with 𝐾 trees would perform better on any data point

than a subset of trees. However, as the performance of the random forest

model stabilizes as the number of trees increases, the difference may be small

when 𝐾 is sufficiently large.

Suppose that we have a training dataset of 5 instances (IDs as 1,2,3,4,5).

Three trees are built using three bootstrapped datasets, as shown in the Table

5.2.

Table 5.2: Three trees and the corresponding bootstrapped datasets

Bootstrap Tree

1,1,4,4,5 1

2,3,3,4,4 2

1,2,2,5,5 3

136

Then, we can estimate the out-of-bag (OOB) errors as shown in Table

5.3 (the true classes of the instances are shown in the top row):

Table 5.3: The out-of-bag (OOB) errors

Tree Training data 1 (C1) 2 (C2) 3 (C2) 4 (C1) 5 (C2)

1 1,1,4,4,5 C1 C2

2 2,3,3,4,4 C1 C2

3 1,2,2,5,5 C2 C1

We can see that, as the data instance (ID = 1) is not used in training Tree

2, we can use Tree 2 to predict on this data instance, and we see that it

correctly predicts the class as C1. Similarly, Tree 1 is used to predict on data

instance (ID=2), and the prediction is wrong. Finally, we can see that the

overall out-of-bag (OOB) error is 1/6.

III.3 R Lab

We apply random forests to the AD data set, with different number of

minimum node sizes. The out-of-bag (OOB) error rates are obtained.

Separately, we use half of the data for training random forests and use the

other half to get the testing error (referred to as the validation error). This is

repeated 50 times and we can get a distribution of the validation error. Lastly,

we also get the training error by building random forests on the data set and

use the same data set for testing. Three types of error rates are plotted in

Figure 5.15. Note there is only one data point at each node size for OOB

error and training error, which are represented as one line instead a range. It

can be seen while the OOB error rates are reasonably aligned with the

validation error rates, the training error rates are much smaller.

library(dplyr)
library(tidyr)
library(ggplot2)
require(randomForest)
set.seed(1)

Analytics of Small Data

137

theme_set(theme_gray(base_size = 15))
library(RCurl)
data <- read.csv(text = getURL("https://raw.githubusercontent.com
/shuailab/ind_498/master/resource/data/AD.csv"))

target_indx <- which(colnames(data) == "DX_bl")
data[, target_indx] <- as.factor(paste0("c", data[, target_ind
x]))
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]

para.v <- c(1, 50, 100, 150, 200)
results <- NULL

OOB error
for (ipara in para.v) {
 rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = data)
 # nodesize = inodesize
 results <- rbind(results, c("OOB_Error", ipara, mean(rf$err.r
ate[, "OOB"])))
}

Validation error
for (ipara in para.v) {
 for (i in 1:50) {
 train.ix <- sample(nrow(data), floor(nrow(data)/2))
 rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = da
ta[train.ix,
])
 pred.test <- predict(rf, data[-train.ix,], type = "class
")
 this.err <- length(which(pred.test != data[-train.ix,]$D
X_bl))/length(pred.test)
 results <- rbind(results, c("Validation_Error", ipara, th
is.err))
 }
}

Training error
for (ipara in para.v) {
 rf <- randomForest(DX_bl ~ ., nodesize = ipara, data = data)
 # nodesize = inodesize
 pred <- predict(rf, data, type = "class")
 this.err <- length(which(pred != data$DX_bl))/length(pred)
 results <- rbind(results, c("Training_Error", ipara, this.er
r))

138

}

colnames(results) <- c("type", "min_node_size", "error")
results <- as.data.frame(results)
results$error = as.numeric(as.character(results$error))
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size))
ggplot() + geom_boxplot(data = results, aes(y = error, x = min_no
de_size, color = type)) +
 geom_point(size = 3)

Figure 5.15: Comparison of different types error rates

Let's also investigate the impact of the number of trees (ntree) on OOB

errors. In particular, we compare 50 trees with 500 trees, with the OOB errors

plotted in Figure 5.16. As expected, the OOB errors from 50 trees are clearly

larger than the errors from 500 trees. This is because fewer trees are used in

the random forests with 50 trees.

para.v <- c(1, 50, 100, 150, 200)
results <- NULL

OOB error with 500 trees

Analytics of Small Data

139

for (ipara in para.v) {
 rf <- randomForest(DX_bl ~ ., nodesize = ipara, ntree = 500,
data = data) # nodesize = inodesize
 results <- rbind(results, c("OOB_Error_500trees", ipara, mean
(rf$err.rate[,
 "OOB"])))
}

OOB error with 50 trees
for (ipara in para.v) {
 rf <- randomForest(DX_bl ~ ., nodesize = ipara, ntree = 50, d
ata = data) # nodesize = inodesize
 results <- rbind(results, c("OOB_Error_50trees", ipara, mean
(rf$err.rate[,
 "OOB"])))
}
colnames(results) <- c("type", "min_node_size", "error")
results <- as.data.frame(results)
results$error = as.numeric(as.character(results$error))
results$min_node_size <- factor(results$min_node_size, unique(res
ults$min_node_size))
ggplot(data = results, aes(y = error, x = min_node_size, fill = t
ype)) + geom_bar(stat = "identity",
 position = "dodge")

Figure 5.16: OOB error rates from random forests with different number

of trees

140

IV. Exercises

Data analysis

1. Find ten classification datasets from the UCI data repository or R

datasets. Using these datasets, conduct experiments to see if the

cross-validation method on training data can provide an

approximation of the testing error on a testing data, as shown in

Figure5.8.

2. Using the datasets you picked up in 1, use cross-validation to select

the best logistic regression model, the best decision tree model, and

the best random forest model. Compare the models.

3. Using these datasets, build random forest models and compare the

OOB error rates from the random forest models with 10-folder

cross-validation error.

Programming

In the book1 by Prof. Cosma Rohilla Shalizi, an interesting experiment is

proposed to show another disadvantage of the concept R-squared. Three

simple datasets are simulated via:

1. Simulate 100 data points of predictor 𝑋 from a uniform distribution

𝑈𝑛𝑖𝑓(0,1) ; then, simulate 100 corresponding values of response

variable 𝑌 from 𝑁(√𝑋, 0.052).

2. Simulate 100 data points of predictor 𝑋 from 𝑁(0.5, 0.12); then,

simulate 100 corresponding values of response variable 𝑌 from

𝑁(√𝑋, 0.052).

1 Shalizi, C.R. Advanced data analysis from an elementary point of view. Book Manuscript:

http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf.

Analytics of Small Data

141

3. Simulate 100 data points of predictor 𝑋 from a uniform distribution

𝑈𝑛𝑖𝑓(2,3) ; then, simulate 100 corresponding values of response

variable 𝑌 from 𝑁(√𝑋, 0.052).

Built three regression models on the three datasets. Comment on the R-

squared of the three fitted models (which aim to fit the same regression

model anyway).

CHAPTER 6: DIAGNOSIS
RESIDUALS AND HETEROGENEITY

I. Overview

Chapter 6 is about “Diagnosis”. Diagnosis, in one sense, is to see if the

assumptions that determine the theoretical validity of the model fit the

empirical characteristics of the data. For example, when we use linear

regression model, we use a whole set of subsequent methods such as the t-

test and F-test to gain more understanding of the model, while these methods

are built on the assumptions such as the normality of the errors. Identification

of assumption violation certainly indicates some concerns, limiting the

strength of our conclusion, but doesn’t mean the model is not useful. The

model is still useful, telling part of the truth. Actually, the model, together

with the potential gap between the theoretical assumptions and the empirical

data characteristics, should be taken as a whole, that jointly form the analytics

practice. Many diagnostic tools are developed for maintaining a critical

attitude towards the models which are essentially artificial

representations/approximations of the reality, yet there is a big difference

between being critical and being dismissive. An even more radical assertion

Analytics of Small Data

143

was once pointed out in the seminar book1 that even a model that doesn’t fit

generates knowledge, revealed not by the failed model but by the misfit of

the model as a fact.

II. Residual Analysis in Regression

In this chapter, we take a pragmatism approach to present some of these

concepts, by combining the background, theory, and R lab into one section.

Residual analysis: Diagnosis of regression models have been theorized

and articulated in a few monographs. Many interesting concepts have been

developed in the literature, such as the multicollinearity,

heteroscedasticity, cook’s distance, leverage, and Q-Q plot, to name a

few.

Let’s use the final regression model we identified in Chapter 2 for an

example. The following R code reproduces this final model:

AD <- read.csv('AD_bl.csv', header = TRUE)
AD$ID = c(1:dim(AD)[1])
str(AD)

fit a full-scale model
AD_full <- AD[,c(1:16)]
lm.AD <- lm(MMSCORE ~ ., data = AD_full)
summary(lm.AD)

Automatic model selection
lm.AD.F <- step(lm.AD, direction="backward", test="F")

The returned final model is summarized by calling the function summary().

MMSCORE ~ PTEDUCAT + FDG + AV45 + HippoNV + rs744373 + rs61093
2 +
rs3764650 + rs3865444

Df Sum of Sq RSS AIC F value Pr(>F)
<none> 1537.5 581.47
- rs3764650 1 7.513 1545.0 581.99 2.4824 0.115750

1 Jaynes, E.T. Probability theory: the logic of science. Cambridge Press, 2003.

144

- rs744373 1 12.119 1549.6 583.53 4.0040 0.045924 *
- rs610932 1 14.052 1551.6 584.17 4.6429 0.031652 *
- rs3865444 1 21.371 1558.9 586.61 7.0612 0.008125 **
- AV45 1 50.118 1587.6 596.05 16.5591 5.467e-05 ***
- PTEDUCAT 1 82.478 1620.0 606.49 27.2507 2.610e-07 ***
- HippoNV 1 118.599 1656.1 617.89 39.1854 8.206e-10 ***
- FDG 1 143.852 1681.4 625.71 47.5288 1.614e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The R package “ggfortify” provides a nice graphic bundle to show some

important diagnostic figures.

Conduct diagnostics of the model
install.packages("ggfortify")
library("ggfortify")

autoplot(lm.AD.F, which = 1:6, ncol = 3, label.size = 3)

Figure 6.1: Diagnostic figures of regression model on the AD dataset

The diagnostic figures shown in Figure 6.1 are information-rich. One way

to interpret them is to put them into a contrast with the way they are

Analytics of Small Data

145

supposed to be. For example, for the left figure in the first row, which is the

scatterplot of the residuals versus fitted values of the outcome variable, it is

supposed to show purely random distributions of the data points. In other

words, any pattern that shows non-random characteristics, such as the curved

relationship between the residuals and fitted values, and the unusual parallel

lines of the data points, indicates deviance from the assumptions such as

independence of the observations and constancy/homoscedasticity of the

variance of the errors.

The Q-Q plot, as the middle figure in the first row, shows violation of the

normality assumption of the error term. And some particularly violating data

points such as the data points 282 and 256 are labelled.

The Cook’s distance shown in the left figure in the second row, shows

the influential data points that have larger than average influence on the

parameter estimation. The Cook’s distance of a data point is built on the idea

of how much change will be induced on the estimated parameters if the data

point is deleted.

The leverage of a data point, on the other hand, shows the influence of

the data point in another way. Mathematically, the leverage of a data point is

𝜕�̂�𝑖

𝜕𝑦𝑖
, reflecting how sensitive the prediction on the data point by the model is

decided by the observed outcome value 𝑦𝑖 . In other words, what data point

will result in high leverage value? For data points that are surrounded by many

close-by data points, their leverages won’t be large, since the impact of

removal of them will be compensated by other similar data points in the

nearby. Thus, we could infer that the data points that sparsely occupy their

neighbor areas will have large leverages. These data points could either be

outliers that severely derivate from the linear trend represented by the

majority of the data points, or could be valuable data points that align with

the linear trend but lack neighbor data points, and thus, changes on their

observations will generate a large impact on the predictions on the data points

nearby their locations. Thus, it is important to note that, a data point that is

146

influential doesn’t necessary imply that it is bad. It only suggests that some

more in-depth examination of the data point is needed.

While the information shown in Figure 6.1 is telling, we don’t know how

bad it is. In other words, we need a baseline version of these figures to

establish an expectation so we can compare Figure 6.1 with. To do so, we

can simulate a dataset while all the assumptions of the linear regression model

are met, to get a sense what these diagnostic figures would look like. The R

code in below shows how we can simulate a dataset with 100 samples from

the regression model:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀, 𝜀~𝑁(0,1).

For comparison, let's simulate data
from a model that fits the assumptions
x1 <- rnorm(100, 0, 1)
x2 <- rnorm(100, 0, 1)
beta1 <- 1
beta2 <- 1
mu <- beta1 * x1 + beta2 * x2
y <- rnorm(100, mu, 1)
lm.XY <- lm(y ~ ., data = data.frame(y,x1,x2))
summary(lm.XY)

We can see that the fitted model fairly reflects the underlying model.

Call:
lm(formula = y ~ ., data = data.frame(y, x1, x2))

Residuals:
Min 1Q Median 3Q Max
-2.6475 -0.6630 -0.1171 0.7986 2.5074

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0366 0.1089 0.336 0.738
x1 0.9923 0.1124 8.825 4.60e-14 ***
x2 0.9284 0.1159 8.011 2.55e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.088 on 97 degrees of freedom

Analytics of Small Data

147

Multiple R-squared: 0.6225, Adjusted R-squared: 0.6147
F-statistic: 79.98 on 2 and 97 DF, p-value: < 2.2e-16

Figure 6.2: Diagnostic figures of regression model on a simulation dataset

Then, we can generate the same set of diagnostic figures. Many interesting

contrasts could be observed. For example, from the left figure on the first

row in Figure 6.2, we can see that, different from the one in Figure 6.1, now

we don’t see any significant non-random statistical pattern. The relationship

between the residual and fitted values seems to be null. From the QQ-plot,

we can also see that the normality assumption is held well. On the other hand,

from the cook’s distance and the leverage plot, some data points are observed

to be influential just as what we can observe from Figure 6.1. As we know

that we have simulated the data strictly following the assumptions of the

linear regression model, this experiment shows that it is normal to expect

some data points exhibiting abnormality according to the cook’s distance and

the leverage.

148

Conduct diagnostics of the model
library("ggfortify")
autoplot(lm.XY, which = 1:6, ncol = 3, label.size = 3)

Multicollinearity analysis: The diagnostic figures shown above are all

about diagnosis on the data points. This perspective of looking at the dataset

point by point (vertically) is the conventional way to define model diagnostics.

There is another perspective which is to look at the dataset variable by

variable (horizontally). In regression model, the problem of multicollinearity

has been well known as a serious problem. Multicollinearity refers to the

phenomenon that many predictor variables highly correlate with each other,

resulting in great ambiguity in the model parameter estimation due to the ill

condition of the matrix 𝐗𝑇𝐗, i.e., small changes on 𝐗 will result in large and

unpredictable changes on the inverse matrix 𝐗𝑇𝐗, which will eventually result

in great instability of the parameter estimation in �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀.

We can do a simple analysis to study this problem of multicollinearity.

Consider a system that generates the observation following the relationships

shown in below:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 + 𝜀, 𝜀~𝑁(0, 𝜎𝜀
2),

𝑥1 = 2𝑥2 + 𝜖, 𝜖~𝑁(0,0.1𝜎𝜀
2)

The system has the symptom of multicollinearity as two of the variables

are highly correlated. Thus, theoretically, we could value the regression model

that is shown in above as the ground truth model equally as we value the

following models:

𝑦 = 𝛽0 + (2𝛽1 + 𝛽2)𝑥2 + 𝛽3𝑥3…+ 𝛽𝑝𝑥𝑝,

𝑦 = 𝛽0 + (𝛽1 + 0.5𝛽2)𝑥1 + 𝛽3𝑥3 +⋯+ 𝛽𝑝𝑥𝑝,

𝑦 = 𝛽0 + 1000𝑥1 + (𝛽2 + 𝛽1 − 2000)𝑥2 + 𝛽3𝑥3 +⋯+ 𝛽𝑝𝑥𝑝,

Thus, the problem of multicollinearity creates this inherent ambiguity of

the models that could be taken as faithful representation of how the data was

generated. Consequently, it makes no sense that an estimation method,

Analytics of Small Data

149

essentially as a reverse-engineering approach, that could recover the truth

while the truth itself is ambivalent.

There are some methods that we can use to diagnose for multicollinearity.

As it is a condition that many variables are highly correlated with each other,

we may present the correlations among the predictor variables. The R

package “corrplot” is a package that has been widely used for visualizing

correlation matrix.

Figure 6.3: Correlations of the predictors in the regression model of

MMSCORE

The following R code shows how to use “corrplot” to visualize the

correlations among the predictors in the regression model we have built in

Chapter 2 for predicting MMSCORE. Result is shown in Figure 6.3.

Extract the covariance matrix of the regression parameters
Sigma = vcov(AD)
Visualize the correlation matrix of the estimated regression pa
rameters
install.packages("corrplot")
library(corrplot)

corrplot(cov2cor(Sigma), method="ellipse")

150

From Figure 6.3 we could observe that there is significant correlations

between the variables, FDG, AV45, and HippoNV, indicating a concern for

multicollinearity. On the other hand, it seems that the correlations are only

moderate, and not all the variables are densely correlated with each other.

We can further visualize the correlation matrix of the estimated regression

parameter:

Sigma = vcov(lm.AD.F)

corrplot(cov2cor(Sigma), method="ellipse")

Then we can observe a similar pattern in Figure 6.4 as shown in Figure 6.3.

Figure 6.4: Correlations of the estimated parameters in the regression

model of MMSCORE

The concern with multicollinearity, as we have discussed and illustrated

using an analysis, is that it may result in unreliable model estimations, due to

the inherent ambiguity and instability in the numerical operations in least

square estimation. The corrplot could help to visually check the data for

multicollinearity, but it could not answer the question whether we should

worry about the model we have built. To answer this question, we could

further use Bootstrap to introduce perturbation into the data and see if the

Analytics of Small Data

151

models fitted on different bootstrapped samples will change. Recall that we

have done this in Chapter 4, we could draw the conclusion that the

multicollinearity issue is not severe here in the AD dataset.

Ranking of variable: A related topic to the multicollinearity problem is

the ranking of features. For example, the R package “leaps” implements the

exhaustive evaluation of all subsets regression, i.e., try every combination of

variables with a minimum number of features in the regression model. The

results will show which models achieve highest R-squared value, and which

variables frequently appear on these models.

Figure 6.5: Regression models ranked by their R-squared and the

constitutive features

The following R code implements this method on the AD dataset. Result

is shown in Figure 6.5.

Evaluate the variable importance by all subsets regression
install.packages("leaps")
library(leaps)

152

leaps<-regsubsets(MMSCORE ~ ., data = AD,nbest=4)
view results
summary(leaps)

plot a table of models showing variables in each model.
models are ordered by the selection statistic.
plot(leaps,scale="r2")

From Figure 6.5 we could observe that, the variables, PTEDUCAT, FDG, AV45,

and HippoNV, are most important features. And rs3865444 shows moderate

significance. Other variables show less significance.

III. Diagnosis in Random Forests
Random forests make few assumptions about the data. It handles mixed

categorical and numerical variables, nonlinearities, and variable interactions

in a more automatic way than data models such as linear regression. However,

random forests are complex and consist of multiple weak trees that are hard

to interpret. Cross-valuation error or out-of-bag (OOB) error can be used to

evaluate the random forests’ model accuracy. However, to be able to trust

random forests, it is desirable to extract interpretable insights from random

forests. Here we introduce a few ways of diagnosis for random forest.

Figure 6.6: Important scores of variables in random forest

Analytics of Small Data

153

Variable Importance: Each variable’s usefulness in predicting the

outcome variable can be measured by the variable importance scores from

random forests. There are two types of importance scores. The first one is

the total decrease of node impurity across all tree nodes that are split by a

variable (retrospectively). The second is measured by the accuracy decrease

by permuting the variable (proactively).

Here we plot the first type of importance score, the impurity gain

importance score, from the random forest model built for the AD data.

Result is shown in Figure 6.6.

library("RWeka")
library("randomForest")
library("RRF")
library("inTrees")
library("ggplot2")

path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
rm_indx <- which(colnames(data) %in% c("DX_bl", "TOTAL13", "MMSCO
RE"))
rf <- randomForest(data[, -rm_indx], as.factor(data[, target_ind
x]))
imp <- as.data.frame(rf$importance)
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
"
imp <- imp[order(imp$importance, decreasing = FALSE), , drop = FA
LSE]
imp$feature <- rownames(imp)
imp$feature <- factor(imp$feature, levels = as.character(imp$feat
ure))
theme_set(theme_gray(base_size = 18))
ggplot(data = imp, aes(x = feature, y = importance)) + geom_bar(s
tat = "identity",
 aes(factor(feature)), fill = "red") + theme(axis.title.y = el
ement_blank(),
 axis.text.y = element_text(hjust = 1, size = 15)) + coord_fli
p()

Not a surprise, we can see from Figure 6.6 that the variables HippoNV, FDG,

AV45, and AGE, are most important features in the random forest model.

Interestingly, we can also see that the feature “ID” has the fourth largest

154

importance score. In normal sense, this is a nuisance feature that is supposed

to be random assignments of IDs to subjects. Thus, we might suspect that

random forest is too powerful in extracting nonlinear patterns from data,

thus it is tricked by noises in a dataset, a trade-off that we could overcome by

more careful model selection and validation using cross-validation and in-

depth analysis.

But on the other hand, this happens in many practical situations that some

supposedly random assignments by humans are actually not the same as pure

random noise, but rather encode some systematical patterns. As Prof. R.A.

Fisher said, who is a pioneer in design of experiments (DOE) and modern

statistics, “if one tries to think of numbers at random, one thinks of numbers

very far from at random1”. In addition, out-of-bag error doesn’t reduce

significantly when the variable ID is removed. This may indicate that the

creation of the ID for the subjects probably contained certain information

about the subjects.

In some other applications, we also find that, if we create a binary variable

to indicate the missing data instances in a feature, sometimes this binary

indicatory variable could be significant. Which means, the missing data itself

as a fact is also informative to predict an outcome! This is not uncommon in

healthcare applications. For instance, when a patient’s condition is severe,

this patient may lack measurements of many clinical variables. Thus, the

missing values of these variables provide valuable information in predicting

if the patient’s condition is severe. This issue is also referred as variable

leakage in machine learning.

Partial dependency plot: Variable importance scores indicate whether a

variable is informative in predicting the outcome variable, but do not provide

information about how the outcome variable is influenced by the variables.

Partial dependency plot can be used to visualize the relationship between the

variables of interest and the outcome variable, averaged on other variables.

For the AD data, we apply the partial dependency plots to the top two

1 Fisher, R.A. Cigarettes, cancer, and statistics. The Centennial Review of Arts &

Science, 1958.

Analytics of Small Data

155

important variables. It is clear that the relationships between the outcome

variable with both predictor variables are significant. And we could also see

the orientation of both relationships, i.e., the larger the HippoNV or FDG, the

more likely that the subjects belong to normal (the class “normal” is coded

as -1).

randomForest::partialPlot(rf, data, HippoNV, "1")
randomForest::partialPlot(rf, data, FDG, "1")

Figure 6.7: Partial dependency plots of variables in random forest

inTrees

Partial dependence plots provide how predictor variables interact with the

outcome variable, while this interaction effect is averaged on other variables.

However, it is difficult to visualize the synergistic effect of multiple variables

on the outcome variable, and a more quantitative approach can be desirable

at times. The inTrees framework can be used for this purpose, which will be

discussed in detail in Chapter 10. In the framework of inTrees, rules can be

extracted, cleaned, and summarized from random forests.

treeList <- RF2List(rf) # transform rf object to an inTrees' for
mat
exec <- extractRules(treeList, data[, -rm_indx]) # R-executable
conditions

156

3695 rules (length<=6) were extracted from the first 100 tree
s.

class <- paste0("class_", as.character(data[, target_indx]))
rules <- getRuleMetric(exec, data[, -target_indx], class)
rules <- pruneRule(rules, data[, -target_indx], class)
rules <- selectRuleRRF(rules, data[, -target_indx], class)
rules <- presentRules(rules, colnames(data[, -target_indx]))

Here are the rules from inTrees applied to the AD data. len indicates the

number of variable-value pairs in the condition of a rule, freq is the

percentage of instances satisfying the condition, and err is the error rate of

the rule. Without the need to choose which variables we would like to study,

the selected rules from inTrees indicate all the important variable interactions

it could identify, i.e., in the generated rules shown below, it shows how

HippoNV and FDG interact with the outcome variable.

len freq err
[1,] "2" "0.3" "0.00600000000000001"
[2,] "2" "0.503" "0.115"
[3,] "3" "0.464" "0.125"
[4,] "2" "0.373" "0.114"
[5,] "2" "0.335" "0.04"
[6,] "3" "0.286" "0.0679999999999999"
[7,] "3" "0.114" "0.0679999999999999"
[8,] "3" "0.209" "0.074"
[9,] "3" "0.176" "0.088"
[10,] "4" "0.023" "0.333"
[11,] "4" "0.017" "0"
[12,] "4" "0.11" "0.035"
[13,] "4" "0.031" "0.125"
[14,] "3" "0.099" "0.118"
condition

[1,] "FDG<=6.35981 & HippoNV<=0.47428125"

[2,] "FDG>6.323505 & HippoNV>0.401237706"

[3,] "PTEDUCAT>12.5 & AV45<=1.5079 & HippoNV>0.463772954"

[4,] "FDG<=6.464415 & HippoNV<=0.4766025375"

[5,] "FDG>6.35679 & HippoNV>0.4764150235"

[6,] "FDG>6.29287 & HippoNV>0.406667579 & rs3851179>0.5"

Analytics of Small Data

157

[7,] "AV45>1.17371 & HippoNV<=0.4713683765 & rs3851179<=0.5"

[8,] "FDG>5.69764 & HippoNV>0.4784356305 & rs3865444<=0.5"

[9,] "FDG>6.513695 & AV45>1.011585 & e4_1<=0.5"

[10,] "FDG<=6.30134 & AV45<=1.25324 & HippoNV>0.507448786 & e4
_1>0.5"
[11,] "PTEDUCAT<=12.5 & AV45>1.103075 & AV45<=1.1183375 & e4_1
<=0.5"
[12,] "AV45>1.057595 & AV45<=1.740035 & HippoNV<=0.421919192 &
 rs744373<=0.5"
[13,] "AGE<=69.55 & FDG<=6.30834 & rs744373>0.5 & rs3865444>0.
5"
[14,] "HippoNV<=0.461434739 & rs744373<=0.5 & rs3851179<=0.5"

pred impRRF
[1,] "class_1" "1"
[2,] "class_0" "0.158820055688818"
[3,] "class_0" "0.0882618347383523"
[4,] "class_1" "0.073427455249915"
[5,] "class_0" "0.0687467199669404"
[6,] "class_0" "0.0557289471858664"
[7,] "class_1" "0.030470587008693"
[8,] "class_0" "0.0255667487231907"
[9,] "class_0" "0.019899126787755"
[10,] "class_1" "0.0179324928636556"
[11,] "class_1" "0.0142529598174707"
[12,] "class_1" "0.0133909560650111"
[13,] "class_1" "0.0106427916981619"
[14,] "class_1" "0.0101981643861376"

Residual analysis

For problems that have a continuous outcome variable, one can apply

residual analysis to random forests through the “plotmo” R package. Here we

perform residual analysis to the AD data where the variable AGE is used as the

outcome variable. First, we plot the residual vs. fitted figure as shown in

Figure 6.8. If the model fits the data well, the data points should spread

around the horizontal line (ideally residual = 0). However, in Figure 6.8, there

158

is a linear pattern between the fitted values and residuals. This indicates that

the random forest model missed some linear relationship in the AD dataset.

Figure 6.8: Residuals versus fitted in the random forest model

Figure 6.9: The Q-Q plot of residuals of the random forest model

require(randomForest)
require(plotmo)
set.seed(1)
path <- "../../data/AD_hd.csv"
data <- read.csv(path, header = TRUE)
target <- data$AGE
rm_indx <- which(colnames(data) %in% c("AGE", "ID", "TOTAL13", "M

Analytics of Small Data

159

MSCORE"))
X <- data[, -rm_indx]
rf.mod <- randomForest(X, target)
plotres(rf.mod, which = 3)

Next, we plot the Q-Q plot that can be interpreted pretty much in the

same way as in Figure 6.1. If the random forests fit the data well, the residuals

should be pure noise, such that a straight line is expected. However, it can be

seen that the residuals deviate from the straight line.

plotres(rf.mod, which = 4)

Both two residual analysis figures show that the random forest model has

underfitting problems, particularly at the two ends of the prediction spectrum.

This is expected as the learning boundary of random forests are parallel to

the axis. To better illustrate this, we simulate a dataset where the outcome

variable has a linear relationship with one single variable. Random forests are

applied to the simulated dataset. From the residual vs. fitted Figure as shown

in Figure 6.10, we can see that there are three points substantially deviated

from the horizontal line and are colored in red. From the Q-Q plot, it is clear

that severe derivations happen at the two ends.

Figure 6.10: Residuals versus fitted in the random forest model fitted on

the simulated dataset

160

require(ggplot2)
set.seed(1)
X <- data.frame(X1 = runif(30, min = -1, max = 1))
target <- 0.5 * X$X1 # + 0.5 * X$X2
rf <- randomForest(X, target)
plotres(rf, which = 3)

plotres(rf, which = 4)

Figure 6.11: The Q-Q plot of residuals of the random forest model fitted

on the simulated dataset

Figure 6.12: Underfitting patterns of random forest to capture linear

relationships in dataset

Analytics of Small Data

161

Now we simulate a testing dataset with more data points, and use the

trained random forests for prediction. The learning boundary is plotted in

Figure 6.12. It can be seen that, at certain intervals, the predicted values

remain constant. This is particularly clear at the two ends of the predictor

variable, where the predictions have a lower bound and upper bound. This is

different from linear regression where the prediction can further increase

towards infinitely. This shows that the random forest model can have

underfitting problem if there are linear patterns in the dataset.

testing <- data.frame(X1 = runif(1000, min = -2, max = 2))
target <- 0.5 * testing$X1 # + 0.5 * X$X2
pred <- predict(rf, testing, type = "response")
pred.data <- cbind(testing, target, pred)
ggplot(pred.data, aes(x = X1, y = pred)) + geom_point(size = 0.5)

IV. Clustering

IV.1 Rationale and Formulation

The residual analysis methods mentioned above have implicitly assumed

that, the lack of fit of the model to the data is probably resulted from some

outliers in the data that are quite different from a majority of the data. In

many applications, the outliers are sparse, randomly distributed, and form no

structure. But in some applications, you may find that the implied structure

with a majority and a few outliers doesn’t apply to the dataset. Rather, it is

possible that there are a few majorities that make the dataset heterogeneous.

Thus, while it is not a usual habit in an analytics book to put clustering

algorithm together with residual analysis, here, we highlight the utility of

clustering method for better understanding of the structure embedded in data

to build better prediction models.

Let’s start with the Gaussian mixture model (GMM), that has been one

of the most popular clustering model. GMM assumes that the data come

from not just one distribution but a few. As shown in Figure 6.13, the data is

sampled from a mix of 4 distributions.

Simulate a clustering structure
X <- c(rnorm(200, 0, 1), rnorm(200, 10,2), rnorm(200,20,1), rnorm
(200,40, 2))

162

Y <- c(rnorm(800, 0, 1))
plot(X,Y, ylim = c(-5, 5), pch = 19, col = "gray25")

Figure 6.13: A mixture of four Gaussian distributions

This leads to the following formulation of data-generating mechanism.

Suppose that there are 𝑀 distributions mixed together. For each data point

𝒙𝑛, the probability that it comes from the mth distribution is denoted as 𝜋𝑚,

while ∑ 𝜋𝑚
𝑀
𝑚=1 = 1 . In GMM, we assume that all the distributions are

Gaussian distributions, i.e., such that we denote the mth distribution as

𝑁(𝝁𝑚, 𝚺𝑚). The task of GMM is to learn the unknown parameters of the

distributions {𝝁𝑚, 𝚺𝑚,𝑚 = 1,2, … ,𝑀} and the probability vector 𝝅 that

includes the elements {𝜋𝑚,𝑚 = 1,2,… ,𝑀} . For simplicity in the

presentation, let’s use 𝚯 to denote all these parameters.

IV.2 Theory/Method

To learn these parameters from data, first, we need to derive the

likelihood function. Frist, we realize that, if we have known which

distribution the data point 𝒙𝑛 was sampled, it would be straightforward to

derive the likelihood function. Following this idea, we invent a binary

indicator variable, denoted as 𝑧𝑛𝑚 , while 𝑧𝑛𝑚 = 1 indicates that 𝒙𝑛 was

Analytics of Small Data

163

sampled from the mth distribution. Then, the complete log-likelihood

function is:

𝑙(𝚯) = log∏ 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1;𝚯)𝑁
𝑛=1 ,

= log∏ 𝑝(𝒙𝑛, 𝑧𝑛𝑚|𝚯)
𝑁
𝑛=1 ,

= log∏ ∏ [𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯)𝑝(𝑧𝑛𝑚 = 1)]𝑧𝑛𝑚𝑀
𝑚=1

𝑁
𝑛=1 ,

= ∑ ∑ [𝑧𝑛𝑚 log 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯) + 𝑧𝑛𝑚 log 𝜋𝑚]
𝑀
𝑚=1

𝑁
𝑛=1 .

Meanwhile, we can derive that

𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1;𝚯) = (2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp {−

1

2
(𝒙𝑛 −

𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛 − 𝝁𝑚)}.

Thus,

𝑙(𝚯) = ∑ ∑ [𝑧𝑛𝑚 log ((2𝜋)
−𝑝/2|𝚺𝑚|

−1/2 exp {−
1

2
(𝒙𝑛 −

𝑀
𝑚=1

𝑁
𝑛=1

𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛 − 𝝁𝑚)}) + 𝑧𝑛𝑚 log 𝜋𝑚].

To optimize for 𝚯, we need to overcome the challenge that 𝑧𝑛𝑚s are

latent and unknown. Here, an intuitive proposal could be:

1. Even we don’t know 𝑧𝑛𝑚, but we can estimate it if we have known

𝚯 . For instance, it is easy to know that 𝑝(𝑧𝑛𝑚 = 1|𝐗,𝚯) =
𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)𝜋𝑚

∑ 𝑝(𝒙𝑛|𝑧𝑛𝑘=1,𝚯)𝜋𝑘
𝑀
𝑘=1

. Thus, given 𝚯, the best estimate of 𝑧𝑛𝑚 could

be the expectation of 𝑧𝑛𝑚 as 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) = 1 ∙

𝑝(𝑧𝑛𝑚 = 1|𝐗,𝚯) + 0 ∙ 𝑝(𝑧𝑛𝑚 = 0|𝐗,𝚯) =
𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)𝜋𝑚

∑ 𝑝(𝒙𝑛|𝑧𝑛𝑘=1,𝚯)𝜋𝑘
𝑀
𝑘=1

.

2. We can fill in 𝑙(𝚯) with the estimated 𝑧𝑛𝑚 and optimize it to update

𝚯. Feed this updated back to Step 1 and repeat the iterations, until all

the parameters in the iterations don’t change significantly.

To do step 2, we need to derive the estimated 𝑙(𝚯), which is denoted as

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯). It can be seen that

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) = ∑ ∑ [〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) log 𝑝(𝒙𝑛|𝑧𝑛𝑚 = 1,𝚯) +𝑀
𝑚=1

𝑁
𝑛=1

〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯) log 𝜋𝑚].

164

To optimize for the parameters {𝝁𝑚, 𝚺𝑚, 𝑚 = 1,2, … ,𝑀} , we take

derivatives of 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) regarding to these parameters and put them

equal to zero:

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝝁𝑚
= ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝝁𝑚

𝑁
𝑛=1 = 𝟎.

We can derive that

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝝁𝑚
=

𝜕 log((2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp{−

1

2
(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)})

𝜕𝝁𝑚
=

−
1

2

𝜕(𝒙𝑛−𝝁𝑚)
𝑇𝚺𝑚

−1(𝒙𝑛−𝝁𝑚)

𝜕𝝁𝑚
= (𝒙𝑛 − 𝝁𝑚)

𝑇𝚺𝑚
−1.

Thus, putting these together we can have

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)(𝒙𝑛 − 𝝁𝑚)
𝑇𝚺𝑚

−1𝑁
𝑛=1 = 𝟎.

This gives us the equation to estimate 𝝁𝑚 as

𝝁𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)𝒙𝑛
𝑁
𝑛=1

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

.

Similarly, we take derivatives of 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) regarding 𝚺𝑚 and put

them equal to zero:

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝚺𝑚
= ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝚺𝑚

𝑁
𝑛=1 = 𝟎.

We can derive that

𝜕 log𝑝(𝒙𝑛|𝑧𝑛𝑚=1,𝚯)

𝜕𝚺𝑚
=

𝜕 log((2𝜋)−𝑝/2|𝚺𝑚|
−1/2 exp{−

1

2
(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)})

𝜕𝚺𝑚
=

1

2

𝜕{|𝚺𝑚|
−1/2−(𝒙𝑛−𝝁𝑚)

𝑇𝚺𝑚
−1(𝒙𝑛−𝝁𝑚)}

𝜕𝚺𝑚
=

1

2
[𝚺𝑚 − (𝒙𝑛 − 𝝁𝑚)(𝒙𝑛 − 𝝁𝑚)

𝑇].

Thus, putting these together we can have

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)[𝚺𝑚 − (𝒙𝑛 − 𝝁𝑚)(𝒙𝑛 − 𝝁𝑚)
𝑇]𝑁

𝑛=1 = 𝟎.

This gives us the equation to estimate 𝚺𝑚 as

𝚺𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)(𝒙𝑛−𝝁𝑚)(𝒙𝑛−𝝁𝑚)

𝑇𝑁
𝑛=1

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

.

Analytics of Small Data

165

Lastly, in order to optimize for {𝜋𝑚,𝑚 = 1,2,… ,𝑀}, we face with the

problem that ∑ 𝜋𝑚
𝑀
𝑚=1 = 1. To address this, we introduce the Lagrange

multiplier 𝜆 and optimize for

〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯) − 𝜆(∑ 𝜋𝑚
𝑀
𝑚=1 − 1).

We take derivatives of it regarding 𝜋𝑚 and put them equal to zero:

𝜕[〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)−𝜆(∑ 𝜋𝑚
𝑀
𝑚=1 −1)]

𝜕𝜋𝑚
=

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝜋𝑚
− 𝜆 = 0.

It is known that

𝜕〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯)

𝜕𝜋𝑚
=

1

𝜋𝑚
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1 .

Thus, for 𝑚 = 1,2,… ,𝑀 we arrive at

∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1 − 𝜆𝜋𝑚 = 0.

Adding these 𝑀 equations together, we have

∑ ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑀
𝑚=1 − 𝜆∑ 𝜋𝑚

𝑀
𝑚=1 = 0.

Since ∑ 𝜋𝑚
𝑀
𝑚=1 = 1, we can get that

𝜆 = ∑ ∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑀
𝑚=1 = 𝑁.

Thus,

𝜋𝑚 =
∑ 〈𝑧𝑛𝑚〉𝑝(𝑧𝑛𝑚|𝐗,𝚯)
𝑁
𝑛=1

𝑁
.

IV.3 R Lab

The R package “Mclust” could be used to implement the GMM model

while the underlying algorithm is the EM algorithm. Again, using the

simulated data with four clusters, the following R code is to identify clusters.

use GMM to identify the clusters
require(mclust)

XY.clust <- Mclust(data.frame(X,Y))
summary(XY.clust)

plot(XY.clust)

Then, we can obtain:

166

--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust VVI (diagonal, varying volume and shape) model with 4 c
omponents:

log.likelihood n df BIC ICL
-3666.07 800 19 -7459.147 -7459.539

Clustering table:
1 2 3 4
199 201 200 200

Figure 6.14: Clustering results of the simulated data

Note that, here, we didn’t specify how many clusters should Mclust find.

It seems that, by using model selection criteria such as BIC which balances

model fit and model complexity (here refers to the number of clusters),

Mclust correctly identified the four clusters. It can also be seen that, for each

cluster, the data points are almost 200.

Now let’s implement GMM on the AD data using Mclust. Result is shown

in Figure 6.15.

install.packages("mclust")
require(mclust)
AD.Mclust <- Mclust(AD[,c(3,4,5,6,10,12,14,15)])
summary(AD.Mclust)

Analytics of Small Data

167

AD.Mclust$data = AD.Mclust$data[,c(1:4)]
plot(AD.Mclust)

--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEI (diagonal, equal volume and shape) model with 4 com
ponents:

log.likelihood n df BIC ICL
-3235.874 517 43 -6740.414 -6899.077

Clustering table:
1 2 3 4
43 253 92 129

Figure 6.15: Clustering results of the AD data

Interestingly, it seems that in the AD data, four clusters are identified as

well. And results are shown in in Figure 6.15. It seems a reasonable clustering

result, although the boundaries between clusters are not as distinct as the

boundaries in Figure 6.14. In real applications, particularly for those

168

applications for which we haven’t known enough, clustering is more like an

exploration tool. It could generate suggestive results, but probably not

confirmative conclusions.

IV.4 Remarks

Clustering-based prediction models: As the existence of clustering

structure in a dataset violates the assumption of many prediction models such

as the regression model that assume the data come from a homogeneous

distribution, evidences in the literature and practices have shown that it will

increase performance of prediction if we could identify the clusters and build

prediction models separately for the clusters. In the literature, some

algorithms have been developed to integrate clustering and prediction models

jointly. For example, the Treed Regression method1 is one of the earlier

examples that propose to build a tree to stratify the dataset and create

regression models on the leaves. Similarly, the logistic model trees model2

also builds the tree to allocate data points into different leaves and build

different logistic regression model for each leaf. Motivated by this line of

thoughts, more models have been developed with different combination of

tree models and prediction models (or other types of statistical models) on

the leaves34.

The EM algorithm: The iterative two-step algorithm is actually the idea

of the Expectation-Maximization (EM) algorithm. The EM algorithm is

commonly used to solve for this type of problems that involve latent

variables. The idea of the EM algorithm in GMM is to follow the iterative

two-steps as shown in below:

1 Alexander, W. and Grimshaw, S. Treed regression. Journal of computational and graphical

statistics, 1996.
2 Landwehr, N., Hall, M. and Frank, E. Logistic model trees, Machine learning, 2004.
3 Gramacy, R. and Lee, H. Bayesian treed gaussian process models with an application to

computer modeling, Journal of American statistical association, 2008.
4 Liu, H., Chen, X., Lafferty, J. and Wasserman, L. Graph-valued regression, NIPS 2009.

Analytics of Small Data

169

1. The E-step: Derive the posterior distribution of 𝐙 as 𝑝(𝐙|𝐗, 𝚯) .

Calculate the expectation of 𝑙(𝚯) according to this distribution, i.e.,

denoted as 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯).

2. The M-step: obtain 𝚯 by maximizing 〈𝑙(𝚯)〉𝑝(𝐙|𝐗,𝚯).

The power of the EM algorithm draws on the Jensen’s inequality. The

Jensen’s inequality says that, let 𝑓 be a convex function defined on an interval

𝐼 . If 𝑥1 , 𝑥2 , … 𝑥𝑛 ∈ 𝐼 and 𝛾1 , 𝛾2 , … 𝛾𝑛 ≥ 0 with ∑ 𝛾𝑖
𝑛
𝑖=1 = 1 , then

𝑓(∑ 𝛾𝑖𝑥𝑖
𝑛
𝑖=1) ≤ ∑ 𝛾𝑖𝑓(𝑥𝑖)

𝑛
𝑖=1 .

Below we show how it work:

log 𝑝(𝐗; 𝚯) = log∫𝑝(𝐗, 𝐙; 𝚯)𝑑𝐙,

= log∫𝑄(𝐙)
𝑝(𝐗,𝐙;𝚯)

𝑄(𝐙)
𝑑𝐙,

≥ ∫𝑄(𝐙) log
𝑝(𝐗,𝐙;𝚯)

𝑄(𝐙)
𝑑𝐙,

= ∫𝑄(𝐙) log 𝑝(𝐗, 𝐙;𝚯) 𝑑𝐙 − ∫𝑄(𝐙)𝑄(𝐙)𝑑𝐙.

The EM algorithm proposed to use 𝑄(𝐙) = 𝑝(𝐙|𝐗, 𝚯). At each M-step,

it can be see that, while the goal is to maximize log 𝑝(𝐗;𝚯) , we could

maximize its lower bound ∫𝑄(𝐙) log 𝑝(𝐗, 𝐙; 𝚯) 𝑑𝐙, such that the objective

function log 𝑝(𝐗;𝚯) is improved with guarantee that the new objective

function won’t decrease along the iterations.

Clustering by random forest: Random forest can also be used for

clustering, as a byproduct. One particular advantage of using random forest

for clustering is that it can cluster data points with mixed types of variables.

To conduct clustering in random forest is to extract the distance information

between data points that have been learned by the random forest model from

data in order to predict. There are multiple ways to do so. For example, one

popular one1 that has found its success in many applications. To do so, a

synthetic data set is generated with the same size as the original data set.

There are two ways outlined in this approach to generate the synthetic data

1 Shi, T. and Horvath, S. Unsupervised learning with random forest predictors.

Journal of computational and graphical statistics, 2006.

170

set. In either case, the original data will be taken as one class, while the

synthetic data will be taken as another class, and the random forest model is

used to classify the two datasets. To generate the synthetic dataset, one

approach is to randomly generate the measurements of each variable using

its empirical marginal distribution. As the random forest model is used to

separate the two datasets, it will stress on the difference between the two

datasets, which is, the variable dependency that is embedded in the original

dataset but deliberately lost in the synthetic dataset. Hence, each tree will be

enriched with splitting variables that are dependent on other variables.

Another approach is a relatively uninformed one, which is to generate the

synthetic dataset by randomly sampling from the hyper rectangle that

contains the original data. That is, the synthetic measurements of each

variable is randomly sampled from a uniform distribution with range

determined by the minimum and maximum of the corresponding observed

variable. It is observed that the first approach is more useful in practice, and

has been implemented in Breiman’s FORTRAN code. After the random

forest is built, a distance between any pair of two data points can be calculated

based on the frequency of this pair of data points existing in the same node.

With this distance information, clustering algorithms based on data pair

distances can be applied to produce the clusters. In the following example,

we generate a data set with two clusters. The clusters produced from the

random forest model are shown in Figure 6.16. It can be seen that the clusters

are reasonably recovered by random forest.

rm(list = ls(all = TRUE))
library(rpart)
library(dplyr)
library(ggplot2)
library(randomForest)
library(MASS)
library(cluster)
ndata <- 2000

sigma <- matrix(c(1, 0, 0, 1), 2, 2)
data1 <- mvrnorm(n = 500, rep(0, 2), sigma)
data2 <- mvrnorm(n = 500, rep(3, 2), sigma)
data <- rbind(data1, data2)
rf <- randomForest(data)

Analytics of Small Data

171

prox <- rf$proximity
clusters <- pam(prox, 2)
data <- as.data.frame(data)
data$cluster <- as.character(clusters$clustering)
ggplot(data, aes(x = V1, y = V2, color = cluster)) + geom_point()
 #+labs(title = 'Data points')

Figure 6.16: Clusters produced by the random forest model

IV. Exercises

Data analysis

1. Find five regression datasets from the UCI data repository or R

dataset. Conduct a detailed analysis using the linear regression model.

Conduct model selection and validation. Conduct residual analysis

of your final models, and comment on your results.

2. Find five classification datasets from the UCI data repository or R

datasets. Conduct a detailed analysis using the logistic regression

model. Conduct model selection and validation. Conduct residual

analysis of your final models, and comment on your results.

3. For the five classification datasets you have selected from the UCI

data repository or R datasets, conduct a detailed analysis using the

random forest model. Conduct model selection and validation.

172

Conduct residual analysis of your final models, and comment on

your results.

Derivation

4. Derive a decision tree model that builds logistic regression model in

its leaf nodes. You can get some help by reading this article1. Name

this hybrid decision tree model!

Programming

5. Write your own R script to implement the hybrid decision tree model

you have developed.

6. Simulate a dataset that fits this model. Then, build your hybrid

decision tree model, logistic regression model, and random forest

model on this simulated dataset. Compare their performances.

7. Repeat 6 on some other datasets you select from the UCI data

repository or R dataset.

1 https://cran.r-project.org/web/packages/rpart/vignettes/usercode.pdf

CHAPTER 7: BALANCE
SVM AND ENSEMBLE LEARNING

I. Overview

Chapter 7 is about “balance”. As in Chapter 4 we have introduced the

concept of overfitting, here, we further expand the issue of overfitting and

introduce two famous models that provide two different approaches to

address the overfitting issue. The two methods are the Support Vector

Machine (SVM) and Ensemble Learning that includes RF as a particular case.

The solutions provided in both methods to control the risk of overfitting are

architectural, rather than some technical adjustments or implementation

tricks.

II. Support Vector Machine

II.1 Rationale and Formulation

As we have learned that, the complexity of the final model should match

the complexity of the signal embed in the noise. Overfitting happens when

the model not only fits the signal part of the data, but also the noise part.

174

Overfitting could lead to promising results on the training data since the

model “memorizes” the training data rather than generalizing the training

data in the form as a model. Since the noise in the training data won’t

reappear in future unseen data, it is sure that the overfitted model won’t

perform well on future unseen data.

Thus, a question that appears in every practice of data analytics is, what

model should I use? Is the model too simple? Or too complex?

Let’s give this question a nice and specific context. Consider the

classification problem that uses linear model to represent the decision

boundary, as shown in below.

Figure 7.1: Which model (e.g., which line) should we use as our

classification model to separate the two classes of data points?

From Figure 7.1, we can see that, if we only consider the classification

error on the given data points of the two classes, it seems that all the models

(represented as the lines) could achieve perfect classification. Thus,

classification error is not sufficient in this case for us to decide on the optimal

model. What else should we bring into the thought process?

As we have mentioned that, the objective of the model is to predict on

future unseen data, now we may turn our attention from the given training

data shown in Figure 7.1 to future unseen data. What could the future unseen

data look like? Will all the models shown in Figure 7.1 perform equally well

on the future unseen data?

Analytics of Small Data

175

It seems that, the lines that are close to the data points may bear a risk of

performing bad on future unseen data. This is because that it seems to be

very plausible that future red data points may allocate a little bit outside of

the current region of the red data points, and thus, if we pick up the line that

is close to red data points, the model may just misclassify the new red data

points.

In other words, the lines that are too close to either side of the data points

lack a safe margin. To reduce risk, we like to have the margin as large as

possible. This is in the same spirit of risk management. This gave birth to the

idea of SVM, as shown in Figure 7.2, where the model SVM suggests is the

one that has the maximum margin.

Figure 7.2: The model that has the maximum margin – the basic idea of

SVM

II.2 Theory/Method

Derivation of the SVM formulation: Denote the training data points as

{(𝒙𝑛, 𝑦𝑛), 𝑛 = 1,2,… , 𝑁}. We are now ready to derive the mathematical

framework corresponding to the idea shown in Figure 7.2. The goal is to

identify a model, 𝒘𝑇𝒙 + 𝑏, using which we can make binary classification:

If 𝒘𝑇𝒙 + 𝑏 > 0, then 𝑦 = 1;

Otherwise, 𝑦 = −1;

176

As we aim to maximize the margin, first, we need to be able to denote the

margin mathematically in terms of the model parameters 𝒘 and 𝑏.

Figure 7.3: Illustration of how to derive the margin

Figure 7.4: Formulation of the idea of maximum margin

Note that, as shown in Figure 7.3, for a data point 𝐴, its perpendicular

distance to the line 𝒘𝑇𝒙 + 𝑏 = 0 can be derive as:

‖𝐴𝑁‖ = ‖𝐴𝐵‖ cos𝜃 = ‖𝐴𝐵‖
𝐴𝐵⃗⃗ ⃗⃗ ⃗∙�⃗⃗⃗�

‖𝐴𝐵‖‖𝒘‖
=

𝐴𝐵⃗⃗ ⃗⃗ ⃗∙�⃗⃗⃗�

‖𝒘‖
.

Denote the coordinates of the two data points 𝐴 and 𝐵 as 𝒙𝑎 and 𝒙𝑏 ,

respectively. Then, we can see that

𝐴𝐵⃗⃗ ⃗⃗ ⃗∙�⃗⃗⃗�

‖𝒘‖
=

𝒘𝑇(𝒙𝑎−𝒙𝑏)

‖𝒘‖
.

Analytics of Small Data

177

As the data point 𝐵 is an arbitrary data point on the line 𝒘𝑇𝒙 + 𝑏 = 0, it

means that 𝒘𝑇𝒙𝑏 = −𝑏. Thus, we can further derive that

‖𝐴𝑁‖ =
𝒘𝑇(𝒙𝑎−𝒙𝑏)

‖𝒘‖
=

𝒘𝑇𝒙𝑎+𝑏

‖𝒘‖
.

Now we can lay this derivation on Figure 7.2 to obtain Figure 7.4.

As shown in Figure 7.4, with a clear characterization of the margin of the

data points to the decision line in terms of the model parameters 𝒘 and 𝑏,

we still need more to write up the objective function of SVM that can

maximizes the margin. We know that, as shown in Figure 7.2, the margin is

only determined by 𝒘, but it seems that in our derivation the margin also

depends on the data points. This indicates that there is a numerical dimension

to fix, as currently the whole formulation is underdetermined.

Thus, in the formulation of SVM, it was suggested to fix numerical scale

of the model with a constraint:

|𝒘𝑇𝒙𝑛 + 𝑏| = 1 for any 𝒙𝑛 that is on the margin.

With this fix, now we are ready to derive the margin in the SVM model

as
2

‖𝒘‖
. To maximize the margin of the model is equivalent to minimize ‖𝒘‖.

This gives us the objective function of the SVM model.

Now let’s derive the constraints of the SVM model. To derive the model

from these training data points, obviously, we need to make sure the model

can perform correctly on the training data. As the data points on the margin

satisfy |𝒘𝑇𝒙𝑛 + 𝑏| = 1, the data points that are beyond the margin will

satisfy |𝒘𝑇𝒙𝑛 + 𝑏| > 1.

Thus, the final SVM formulation is:

min
𝒘

1

2
‖𝒘‖,

Subject to: 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 for 𝑛 = 1,2,… ,𝑁.

To solve this problem, first, we can use the method of Lagrange multiplier:

𝐿(𝒘, 𝑏, 𝜶) =
1

2
‖𝒘‖ − ∑ 𝛼𝑛[𝑦𝑛(𝒘

𝑇𝒙𝑛 + 𝑏) − 1]
𝑁
𝑛=1 .

This could be rewritten as

𝐿(𝒘, 𝑏, 𝜶) =
1

2
𝒘𝑇𝒘−∑ 𝛼𝑛𝑦𝑛𝒘

𝑇𝒙𝑛
𝑁
𝑛=1 − 𝑏∑ 𝛼𝑛𝑦𝑛

𝑁
𝑛=1 + ∑ 𝛼𝑛

𝑁
𝑛=1 .

178

Differentiating 𝐿(𝒘, 𝑏, 𝜶) with respect to 𝒘 and 𝑏, and setting to zero

yields:

𝒘 = ∑ 𝛼𝑛𝑦𝑛𝒙𝑛
𝑁
𝑛=1 ,

∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0.

Then, we can rewrite 𝐿(𝒘, 𝑏, 𝜶) as

𝐿(𝒘, 𝑏, 𝜶) = ∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 .

This is because that:
1

2
𝒘𝑇𝒘 =

1

2
𝒘𝑇 ∑ 𝛼𝑛𝑦𝑛𝒙𝑛

𝑁
𝑛=1 =

1

2
∑ 𝛼𝑛𝑦𝑛𝒘

𝑇𝒙𝑛
𝑁
𝑛=1 =

1

2
∑ 𝛼𝑛𝑦𝑛(∑ 𝛼𝑛𝑦𝑛𝒙𝑛

𝑁
𝑛=1)𝑇𝒙𝑛

𝑁
𝑛=1 =

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 .

Then, finally, we can derive the model of SVM by solving its dual form

problem:

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒙𝑛

𝑇𝒙𝑚
𝑁
𝑚=1

𝑁
𝑛=1 ,

Subject to: 𝛼𝑛 ≥ 0 for 𝑛 = 1,2,… , 𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0.

This is a quadratic programming problem that can be solved using

many existing packages.

Note that, the learned model parameters could be represented as:

�̂� = ∑ 𝛼𝑛𝑦𝑛𝒙𝑛
𝑁
𝑛=1 and �̂� = 1 − �̂�𝑇𝒙𝑛 for any 𝒙𝑛 whose 𝛼𝑛 > 0.

And we know that, based on the KKT condition of the SVM formulation,

the following equations must hold:

𝛼𝑛[𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) − 1] = 0 for 𝑛 = 1,2, … ,𝑁.

Thus, for any data point, e.g., the nth data point, it is either

𝛼𝑛 = 0 or 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) − 1 = 0.

Support vectors: This leads to the following interesting phenomenon,

which leads to the definition of the “support vectors” as shown in Figure

7.5. The support vectors are what have been taken by the learning algorithm

to constitute its decision function, which thus hold crucial implications for

the SVM model. First, based on some theoretical evidences, the number of

support vectors is usually a metric that can indicate the healthiness of the

model, i.e., the smaller the better. Second, it also reveals that the main

Analytics of Small Data

179

statistical information the SVM model uses is from the support vectors. Thus,

some works have been inspired by this aspect to accelerate the computation

of SVM model training by discarding potentially non-support-vectors.

Figure 7.5: Support vectors of SVM are the data points that are on the

margins

Figure 7.6: Behaviors of the slack variables

Extension to non-separable cases: Note that, we have assumed that

the two classes are separable. It is easy to relax this assumption. Ideally, in

SVM, we hope that all the data points are either on or beyond the margin.

We could relax this idealism and allow some data points to be within the

180

margins or even on the wrong side of the decision line. To do so, we

introduce the slack variables:

𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 for 𝑛 = 1,2,… ,𝑁.

As shown in Figure 7.6, the data points that are within the margins will

have the corresponding slack variables as 0 ≤ 𝜉𝑛 ≤ 1, and the data points

that are on the wrong side of the decision line have the corresponding slack

variables as 𝜉𝑛 > 1.

 (a) (b)

Figure 7.7: (a) A linearly inseparable dataset; (b) with transformation (a)

becomes separable

The corresponding formulation of the SVM model becomes:

min
𝒘

1

2
‖𝒘‖ + 𝐶 ∑ 𝜉𝑛

𝑁
𝑛=1 ,

Subject to: 𝑦𝑛(𝒘
𝑇𝒙𝑛 + 𝑏) ≥ 1 − 𝜉𝑛 and 𝜉𝑛 ≥ 0, for 𝑛 = 1,2,… ,𝑁.

Here, 𝐶 is a user-specified parameter to control how much tolerance we

can assign for the slack variables.

Extension to nonlinear SVM: So far, we have presented SVM in linear

models. Sometimes, the decision boundary could not be characterized as

linear models, as shown in Figure 7.7 (a).

To create a nonlinear model within the framework of linear model, we

could conduct transformation of the original variables. Here, we conduct the

following transformation from 𝒙 to 𝒛:

Analytics of Small Data

181

𝑧1 = 𝑥1
2,

𝑧2 = √2𝑥1𝑥2,

𝑧3 = 𝑥2
2.

Then, in the new coordinates system, as shown in Figure 7.7 (b), the data

points of the two classes become separable. This is the approach we often

use in regression models as well, to create explicit transformation that asks

us to write up how the features 𝒛 could be represented as 𝒙.

A remarkable thing about SVM is that, its formulation allows implicit

transformation. This implicit transformation could be done by the use of

kernel function. The dual formulation of SVM on the transformed variables

is:

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝒛𝑛

𝑇𝒛𝑚
𝑁
𝑚=1

𝑁
𝑛=1 ,

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2, … ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0.

It can be seen that, the dual formulation of SVM shown above doesn’t

really need the information of individual 𝒛𝑛. Rather, only the inner product

of 𝒛𝑛
𝑇𝒛𝑚 is needed. As 𝒛 is essentially functional of 𝒙, i.e., 𝒛 = 𝜙(𝒙), it can

be seen that 𝒛𝑛
𝑇𝒛𝑚 is a function of 𝒙𝑛 and 𝒙𝑚. Thus, we can write it up as

𝒛𝑛
𝑇𝒛𝑚 = 𝐾(𝒙𝑛, 𝒙𝑚). This is called the “kernel function”. A kernel function

is a function that theoretically entails a transformation 𝒛 = 𝜙(𝒙) such that

𝐾(𝒙𝑛, 𝒙𝑚) implies that it can be written as an inner product 𝐾(𝒙𝑛, 𝒙𝑚) =

𝜙(𝒙)𝑇𝜙(𝒙) . In other words, our effort now is not to seek explicit

transformations that may be tedious and difficult, rather, we seek kernel

functions that entail such transformations.

Nowadays we have had many such kernel functions to use. For example,

the Gaussian radial basis kernel function is defined as

𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒
−𝛾‖𝒙𝑖−𝒙𝑗‖

2

,

where the transformation 𝒛 = 𝜙(𝒙) is implicit and infinitely long to

represent any smooth function.

The polynomial kernel function is defined as

𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 1)

𝑞
.

182

Also, the linear kernel function is defined as

𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗.

And there are still many new kernel functions to be developed to enrich

our capacity of representing nonlinear decision boundaries in real-world

applications. With a given kernel function, SVM learns the model by solving

the following optimization problem:

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝐾(𝒙𝑛, 𝒙𝑚)

𝑁
𝑚=1

𝑁
𝑛=1 ,

Subject to: 0 ≤ 𝛼𝑛 ≤ 𝐶 for 𝑛 = 1,2, … ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0.

However, in the kernel space, it will no longer to possible to write up the

parameter 𝒘 the same way as in linear models.

For any new data point, denoted as 𝒙∗, the learned SVM model predict

on it as

If ∑ 𝛼𝑛𝑦𝑛𝐾(𝒙𝑛, 𝒙∗)
𝑁
𝑛=1 + 𝑏 > 0, then 𝑦 = 1;

Otherwise, 𝑦 = −1.

II.3 R Lab

Let’s try on an example. Consider a dataset:

𝒙1 = (−1,−1), 𝑦1 = −1;

𝒙2 = (−1,+1), 𝑦2 = +1;

𝒙3 = (+1,−1), 𝑦3 = +1;

𝒙4 = (+1,+1), 𝑦4 = −1.

We could use R to visualize this dataset. The R code is shown in below:

Package installation
pkgs <- c('ggplot2', 'kernlab', 'ROCR')
install.packages(pkgs)
source('http://bioconductor.org/biocLite.R')
biocLite('ALL')

For the toy problem
x = matrix(c(-1,-1,1,1,-1,1,-1,1), nrow = 4, ncol = 2)
y = c(-1,1,1,-1)
linear.train <- data.frame(x,y)

Visualize the distribution of data points of two classes
require('ggplot2')

Analytics of Small Data

183

p <- qplot(data=linear.train, X1, X2, colour=factor(y),xlim = c
(-1.5,1.5), ylim = c(-1.5,1.5))
p <- p + labs(title = "Scatterplot of data points of two classes
")
print(p)

The dataset is visualized in Figure 7.8. It is clear that the dataset presents

a linearly inseparable problem, calling for the use of kernel to build nonlinear

classification boundary.

Figure 7.8: A linearly inseparable dataset

Now, consider the kernel function, 𝐾(𝒙𝑛, 𝒙𝑚) = (𝒙𝑛
𝑇𝒙𝑚 + 1)

2, which

corresponds to the transformation:

𝜙(𝒙𝑛) = [1, √2𝑥𝑛,1, √2𝑥𝑛,2, √2𝑥𝑛,1𝑥𝑛,2, 𝑥𝑛,1
2 , 𝑥𝑛,2

2]
𝑇
.

The objective function becomes:

max
𝜶
∑ 𝛼𝑛
𝑁
𝑛=1 −

1

2
∑ ∑ 𝛼𝑛𝛼𝑚𝑦𝑛𝑦𝑚𝐾(𝒙𝑛, 𝒙𝑚)

4
𝑚=1

4
𝑛=1 ,

Subject to: 𝛼𝑛 ≥ 0 for 𝑛 = 1,2,… ,𝑁 and ∑ 𝛼𝑛𝑦𝑛
𝑁
𝑛=1 = 0.

We can calculate the kernel matrix as

𝑲 = [

9 1
1 9

1 1
1 1

1 1
1 1

9 1
1 9

].

Then, we can solve the quadratic programming problem and get that

184

𝛼1 = 𝛼2 = 𝛼3 = 𝛼4 = 0.125.

In this particular case, as we can write up the transformation explicitly, we

can write up �̂� explicitly as:

�̂� = ∑ 𝛼𝑛𝑦𝑛𝜙(𝒙𝑛)
4
𝑛=1 = [0,0,0,1/√2, 0,0]

𝑇
.

Then, we can write up the decision function explicitly as:

𝑓(𝒙∗) = �̂�
𝑇𝜙(𝒙∗) = 𝑥∗,1𝑥∗,2.

As you can see, this is the decision boundary for a typical XOR problem.

On the other hand, we can use R to build the SVM model on this dataset and

see if our results could be reproduced in R. To do so, we use the R package

“kernlab” and its function ksvm(). The R code is shown in below:

Train a linear SVM
x <- cbind(1, poly(x, degree = 2, raw = TRUE))
coefs = c(1,sqrt(2),sqrt(2),sqrt(2),1,1)
x <- x * t(matrix(rep(coefs,4),nrow=6,ncol=4))
linear.train <- data.frame(x,y)
require('kernlab')

linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel
='vanilladot', C=10, scale=c())

The function alpha() returns the values of 𝛼𝑛 for 𝑛 = 1,2, … ,𝑁. Here,

note that, the function scaled the vector 𝜶. Thus, our manual results are

consistent with the results obtained by using R.

alpha(linear.svm) #scaled alpha vector

[[1]]
[1] 0.2499619 0.2499619 0.2499873 0.2499873

Now let’s do more examples. First, let’s generate a dataset with linearly

separable boundary.

Generate a dataset with linear boundary
n <- 200
p <- 2
n.pos <- n/2
x.pos <- matrix(rnorm(n*p, mean=0, sd=1),n.pos, p)
x.neg <- matrix(rnorm(n*p, mean=2, sd=1), n-n.pos, p)
y <- c(rep(1, n.pos), rep(-1, n-n.pos))
n.train <- floor(0.8 * n)
idx.train <- sample(n, n.train)

Analytics of Small Data

185

is.train <- rep(0, n)
is.train[idx.train] <- 1
linear.data <- data.frame(x=rbind(x.pos, x.neg), y=y, train=i
s.train)
Extract train and test subsets of the dataset
linear.train <- linear.data[linear.data$train==1,]
linear.train <- subset(linear.train, select=-train)
linear.test <- linear.data[linear.data$train==0,]
linear.test <- subset(linear.test, select=-train)
str(linear.train)

'data.frame': 160 obs. of 3 variables:
$ x.1: num 0.707 -0.92 0.87 -0.621 2.101 ...
$ x.2: num -2.959 1.37 -0.526 0.989 0.833 ...
$ y : num 1 1 1 1 1 1 1 1 1 1 ...

str(linear.test)

'data.frame': 40 obs. of 3 variables:
$ x.1: num -1.857 -1.703 0.923 1.448 -0.723 ...
$ x.2: num 1.7934 0.0927 1.4485 1.1649 -0.1459 ...
$ y : num 1 1 1 1 1 1 1 1 1 1 ...

We can visualize the data as shown in Figure 7.9.

Visualize the distribution of data points of two classes
require('ggplot2')
p <- qplot(data=linear.data, x.1, x.2, colour=factor(y))
p <- p + labs(title = "Scatterplot of data points of two classes
")
print(p)

We then use the ksvm() function to build the SVM model:

Train a linear SVM
require('kernlab')
linear.svm <- ksvm(y ~ ., data=linear.train, type='C-svc', kernel
='vanilladot', C=10, scale=c())

By typing in linear.svm, we can see more details of the built model. In

this analysis, out of 200 data points, only 7 data points are needed to be the

support vectors to define the linear boundary to separate two classes. This is

a good and healthy sign of the generalizability of the model to achieve robust

success on unseen future data if the unseen future data would come from the

same distribution of the training data.

186

We can also visualize the built model using the following R code, as

shown in Figure 7.10. The black points shown in Figure 7.10 are the support

vectors.

Plot the model
plot(linear.svm, data=linear.train)

Figure 7.9: A randomly generated dataset with linearly separable boundary

Figure 7.10: Visualization of the linear SVM model built for the simulated

dataset

To verify our hypothesis that the model would obtain robust performance

on unseen testing data, here, we present the ROC curve of the linear SVM

model on the testing data that is not used in training the model.

Analytics of Small Data

187

Generate the ROC curve using the testing data
Prediction scores
linear.prediction.score <- predict(linear.svm, linear.test, type=
'decision')
Compute ROC and Precision-Recall curves
require('ROCR')

linear.roc.curve <- performance(prediction(linear.prediction.sc
ore, linear.test$y),
 measure='tpr', x.measure='fpr')
plot(linear.roc.curve, lwd = 2, col = "orange3",
 main = "Validation of the linear SVM model using testing dat
a")

As shown in Figure 7.11, indeed, the ROC curve shows the linear SVM

model predicts well on the testing data.

Figure 7.11: The ROC curve of the linear SVM model on testing data

On the other hand, similarly as what we have discussed in Chapter 5, in

practice we will not use a testing data to guide the model selection. Thus, the

performance of the trained model has to be evaluated using the training data.

188

Figure 7.12: The ROC curve of the linear SVM model by 10-folder

cross-validation

To achieve this, the cross-validation has been shown in Chapter 5 that

can approximate the testing performance of the model. Here, again, we use

this example to show that indeed the cross-validation provides such an

effective way. The R code is shown in below:

Generate the ROC curve using 10-folder cross validation
n <- nrow(linear.data)
n.folds=10
idx <- split(sample(seq(n)), seq(n.folds))
scores <- rep(0, n)
for(i in seq(n.folds)) {
 model <- ksvm(y ~ ., data=linear.data[-idx[[i]],], kernel='van
illadot', C=100)
 scores[idx[[i]]] <- predict(model, linear.data[idx[[i]],], typ
e='decision')
}

plot(performance(prediction(scores, linear.data$y), measure='tpr
', x.measure='fpr'),
 lwd = 2, col = "steelblue2",
 main = "Validation of the linear SVM model using 10-folder c
ross validation")

It can be observed that the ROC curve presented in Figure 7.12

approximates the ROC curve presented in Figure 7.11 well, showing that the

Analytics of Small Data

189

ROC curve by 10-folder cross-validation is a good estimation of the ROC

curve obtained on a testing dataset.

Since the 10-folder cross-validation could be used to obtain the prediction

performance of any given model, it gives rise to the possibility that we could

use it to compare different model formulations and decide on which model

is the best. To do so, the R package “caret” could be used that has an

automatic procedure dedicated for this.

Cross-validation using caret pacakge
install.packages("caret")
install.packages("pROC")
Training SVM Models
require(caret)

require(kernlab) # support vector machine
require(pROC) # plot the ROC curves

Setup for cross validation
ctrl <- trainControl(method="repeatedcv", # 10fold cross valida
tion
 repeats=5, # do 5 repititions of cv
 summaryFunction=twoClassSummary, # Use AUC
 to pick the best model
 classProbs=TRUE)

#Train and Tune the SVM
linear.train <- data.frame(linear.train)
trainX <- linear.train[,1:2]
trainy= linear.train[,3]
trainy[which(trainy==1)] = rep("T",length(which(trainy==1)))
trainy[which(trainy==-1)] = rep("F",length(which(trainy==-1)))
svm.tune <- train(x = trainX,
 y = trainy,
 method = "svmLinear", # Linear kernel
 tuneLength = 9, # 9 values of
 the cost function
 preProc = c("center","scale"), # Center and sc
ale data
 metric="ROC",
 trControl=ctrl)

svm.tune

Then we can obtain that:

svm.tune

190

Support Vector Machines with Linear Kernel

160 samples
2 predictor
2 classes: 'F', 'T'

Pre-processing: centered (2), scaled (2)
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 144, 144, 144, 145, 143, 144, ...
Resampling results:

ROC Sens Spec
0.9625198 0.8964286 0.9055556

Tuning parameter 'C' was held constant at a value of 1

While “caret” provides an automatic but sealed process to help us

directly arrive the final end, the R package “manipulate” could be used to

visualize the intermediate process. Here, we take some snapshots of this

dynamic and interactive process and present these snapshots in Figures 7.13

and 7.14. It can be seen that, with larger value of 𝐶, a tighter margin could be

obtained with less support vectors.

Figure 7.13: Visualization of the linear SVM model with C = 0.01.

Analytics of Small Data

191

Figure 7.14: Visualization of the linear SVM model with C = 10.

Let’s further consider a nonlinear dataset.

Generate a dataset with nonlinear boundary
n = 100
p = 2
bottom.left <- matrix(rnorm(n*p, mean=0, sd=1),n, p)
upper.right <- matrix(rnorm(n*p, mean=4, sd=1),n, p)
tmp1 <- matrix(rnorm(n*p, mean=0, sd=1),n, p)
tmp2 <- matrix(rnorm(n*p, mean=4, sd=1),n, p)
upper.left <- cbind(tmp1[,1], tmp2[,2])
bottom.right <- cbind(tmp2[,1], tmp1[,2])
y <- c(rep(1, 2 * n), rep(-1, 2 * n))
idx.train <- sample(4 * n, floor(3.5 * n))
is.train <- rep(0, 4 * n)
is.train[idx.train] <- 1
nonlinear.data <- data.frame(x=rbind(bottom.left, upper.right,
upper.left, bottom.right), y=y, train=is.train)

Visualize the distribution of data points of two classes
require('ggplot2')
p <- qplot(data=nonlinear.data, x.1, x.2, colour=factor(y))
p <- p + labs(title = "Scatterplot of data points of two classes
")
print(p)

As shown in Figure 7.15, this nonlinear dataset is similar to the XOR

problem we have shown in the beginning of this section, in the sense that a

similar style of classification boundary is needed.

192

Figure 7.15: A randomly generated dataset with nonlinear boundary

Then, let’s use the “kernlab” with Gaussian kernel (denoted as

“svmRadial”) and the 10-folder cross-validation procedure in “caret” to

train a nonlinear SVM model.

Use cross-validation to choose C
install.packages("caret")
install.packages("pROC")
Training SVM Models
require(caret)
require(kernlab) # support vector machine
require(pROC) # plot the ROC curves
Setup for cross validation
ctrl <- trainControl(method="repeatedcv", # 10fold cross valida
tion
 repeats=1, # do 5 repititions of cv
 summaryFunction=twoClassSummary, # Use AUC
 to pick the best model
 classProbs=TRUE)

#Train and Tune the SVM
nonlinear.train <- data.frame(nonlinear.train)
trainX <- nonlinear.train[,1:2]
trainy= nonlinear.train[,3]
trainy[which(trainy==1)] = rep("T",length(which(trainy==1)))
trainy[which(trainy==-1)] = rep("F",length(which(trainy==-1)))
svm.tune <- train(x = trainX,

Analytics of Small Data

193

 y = trainy,
 method = "svmRadial", # Radial kernel
 tuneLength = 9, # 9 values of
 the cost function
 preProc = c("center","scale"), # Center and sc
ale data
 metric="ROC",
 trControl=ctrl)

svm.tune

Details of the model tuning by the cross-validation process is shown in

below:

Support Vector Machines with Radial Basis Function Kernel

350 samples
2 predictor
2 classes: 'F', 'T'

Pre-processing: centered (2), scaled (2)
Resampling: Cross-Validated (10 fold, repeated 1 times)
Summary of sample sizes: 315, 315, 315, 315, 315, 315, ...
Resampling results across tuning parameters:

C ROC Sens Spec
0.25 0.9878913 0.9584559 0.9502924
0.50 0.9869174 0.9584559 0.9502924
1.00 0.9872463 0.9643382 0.9502924
2.00 0.9826561 0.9525735 0.9558480
4.00 0.9797171 0.9584559 0.9502924
8.00 0.9754708 0.9584559 0.9558480
16.00 0.9735144 0.9525735 0.9447368
32.00 0.9709086 0.9466912 0.9502924
64.00 0.9659980 0.9290441 0.9391813

Tuning parameter 'sigma' was held constant at a value of 1.834
54
ROC was used to select the optimal model using the largest va
lue.
The final values used for the model were sigma = 1.83454 and C
 = 0.25.

Again, we can use the package “manipulate” to see how the model

changes according to the parameters such as C and even kernel types.

194

Figure 7.16: SVM model with C = 0.01 and Gaussian kernel

Figure 7.17: SVM model with C = 10 and Gaussian kernel

Figure 7.18: SVM model with C = 0.1 and Laplacian kernel

Analytics of Small Data

195

Figure 7.19: SVM model with C = 10 and Laplacian kernel

Finally, let’s implement the above process on the AD dataset.

Dataset of Alzheimer's Disease
Objective: prediction of diagnosis
filename
AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

#Train and Tune the SVM
n = dim(AD)[1]
n.train <- floor(0.8 * n)
idx.train <- sample(n, n.train)
AD[which(AD[,1]==0),1] = rep("Normal",length(which(AD[,1]==0)))
AD[which(AD[,1]==1),1] = rep("Diseased",length(which(AD[,1]==1)))
AD.train <- AD[idx.train,c(1:16)]
AD.test <- AD[-idx.train,c(1:16)]
trainX <- AD.train[,c(2:16)]
trainy= AD.train[,1]

Setup for cross validation
ctrl <- trainControl(method="repeatedcv", # 10fold cross valida
tion
 repeats=1, # do 5 repititions of cv
 summaryFunction=twoClassSummary, # Use AUC
 to pick the best model
 classProbs=TRUE)

Use the expand.grid to specify the search space
grid <- expand.grid(sigma = c(0.002, 0.005, 0.01, 0.012, 0.015),
 C = c(0.3,0.4,0.5,0.6)
)

196

svm.tune <- train(x = trainX,
 y = trainy,
 method = "svmRadial", # Radial kernel
 tuneLength = 9, # 9 values of
 the cost function
 preProc = c("center","scale"), # Center and sc
ale data
 metric="ROC",
 tuneGrid = grid,
 trControl=ctrl)

svm.tune

Then we can obtain the following results.

Support Vector Machines with Radial Basis Function Kernel

413 samples
15 predictor
2 classes: 'Diseased', 'Normal'

Pre-processing: centered (15), scaled (15)
Resampling: Cross-Validated (10 fold, repeated 1 times)
Summary of sample sizes: 371, 372, 372, 371, 372, 372, ...
Resampling results across tuning parameters:

sigma C ROC Sens Spec
0.002 0.3 0.8929523 0.9121053 0.5932900
0.002 0.4 0.8927130 0.8757895 0.6619048
0.002 0.5 0.8956402 0.8452632 0.7627706
0.002 0.6 0.8953759 0.8192105 0.7991342
0.005 0.3 0.8965129 0.8036842 0.8036797
0.005 0.4 0.8996565 0.7989474 0.8357143
0.005 0.5 0.9020830 0.7936842 0.8448052
0.005 0.6 0.9032422 0.7836842 0.8450216
0.010 0.3 0.9030514 0.7889474 0.8541126
0.010 0.4 0.9058248 0.7886842 0.8495671
0.010 0.5 0.9060999 0.8044737 0.8541126
0.010 0.6 0.9077848 0.8094737 0.8450216
0.012 0.3 0.9032308 0.7781579 0.8538961
0.012 0.4 0.9049043 0.7989474 0.8538961
0.012 0.5 0.9063505 0.8094737 0.8495671
0.012 0.6 0.9104511 0.8042105 0.8586580
0.015 0.3 0.9060412 0.7886842 0.8493506
0.015 0.4 0.9068165 0.8094737 0.8495671
0.015 0.5 0.9109051 0.8042105 0.8541126
0.015 0.6 0.9118615 0.8042105 0.8632035

Analytics of Small Data

197

ROC was used to select the optimal model using the largest va
lue.
The final values used for the model were sigma = 0.015 and C =
 0.6.

It can be seen that, by 10-folder cross-validation, the best model

parameters are sigma = 0.015 and C = 0.6, which achieve a prediction

performance as 90.49%.

II.4 Remarks

Is SVM a more complex model? Here, we need to look at the term

“complexity” carefully. What is a complex model? Comparing with linear

regression model or logistic regression model, the idea of SVM and

formulation of SVM indeed seems more complex. This is probably true. The

inventor of SVM, Vladimir Vapnik, once said in the preface of his seminar

book1 that delineates the theory of SVM, that he often heard peers talked in

conferences that complex models don’t work but simple models work. He

thought, SVM, commonly perceived as a more complex model, is essentially

simpler than some simple model. This is true, since some models that look

simple are only because they presuppose stronger conditions, which make

them essentially more complex!

Thus, a model is more complex than another model doesn’t necessary

stem from the fact that the more complex one employs a more sophisticated

mathematical representation. At least, in our current context, it doesn’t mean

in this way when we say a model is complex. Here, we say that a model is

more complex if it provides more capacity to represent the statistical

phenomena in the training data. In other words, a more complex model is

more flexible of responding to any patterns in the data by adjusting itself.

Now, look at Figure 7.20, which model is simpler?

1 Vapnik, V. The nature of statistical learning theory. Springer, 2000.

198

Figure 7.20: SVM is actually a simpler model

Is SVM a neural network model? Another interesting fact about SVM

is that, when it was developed, it was named as “support vector network”. In

other words, it has a connection with the artificial neural network. This is

revealed in the Figure 7.21. Readers who know neural network models are

encouraged to write up the mathematical model of the SVM model following

the neural network format as shown in Figure 7.21.

Figure 7.21: SVM as a neural network model

Analytics of Small Data

199

III. Ensemble Learning

III.1 Rationale and Formulation

As we mentioned in the beginning of this chapter, the random forest

model is a particular case of the more general category of models that are

called ensemble models. Ensemble models consist of multiple base models,

denoted as, ℎ1, ℎ2, … , ℎ𝐾, where 𝐾 is the total number of base models. Each

model can be considered as a hypothesis in the space of ℋ that includes all

the possible models. A general framework of ensemble learning is illustrated

in Figure 7.22. Each model is built on a sample that is created from the

original dataset. Recall that, in random forest models, each tree is built on an

independently bootstrapped sample (also referred to as bagging), but this is

not the only approach we can create a new dataset from the original dataset.

For instance, in Adaboost (illustrated in pseudo code below Figure 7.22), the

sample for a base model is not independently created. Rather, it also depends

on the error rates from previous base models. In other words, it takes an

adaptive and sequential approach to grow its base models, while later models

more focus on the hard data points that present challenges for previous base

models to achieve good prediction performance.

Figure 7.22: A general framework of ensemble learning

200

AdaBoost algorithm for two-class classification problems

Given 𝑁 data points (𝑥1,𝑦1), (𝑥2,𝑦2), …, (𝑥𝑁,𝑦𝑁), build 𝑇trees

Initialize equal weights for all data points 𝑤1 = (
1

𝑁
, … ,

1

𝑁
)

For 𝑡 in 1 to 𝑇

 Build base learner ℎ𝑡 on the data points with weights 𝑤𝑡

 Calculate weighted error 𝜖𝑡 = ∑ 𝑤𝑡,𝑛{ℎ𝑡(𝑥𝑛) ≠ 𝑦𝑛}
𝑁
𝑛=1

 Calculate coefficient for ℎ𝑡: 𝛼𝑡 =
1

2
ln (

1−𝜖𝑡

𝜖𝑡
)

 Updated weights: 𝑤𝑡+1,𝑖 =
𝑤𝑡,𝑖

𝑍𝑡
∗ {
𝑒−𝛼𝑡 𝑖𝑓 ℎ𝑡(𝑥𝑛) = 𝑦𝑛

𝑒𝛼𝑡 𝑖𝑓 ℎ𝑡(𝑥𝑛) ≠ 𝑦𝑛

where 𝑍𝑡 is a normalization factor so that ∑ 𝑤𝑡+1,𝑛
𝑁
𝑛=1 = 1

Calculate final decision: 𝐻(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡ℎ𝑡(𝑥)
𝑇
𝑡=1)

III.2 Theory/Method

As shown in Figure 7.22, the ensemble learning is very flexible as different

approaches could be combined to create new samples and build new base

models. It has been known that ensemble learning is very powerful in

practices and has been reported as the winner methods in numerous data

science competitions. Just like SVM, it is another main approach to handle

the risk of overfitting in practice. Here, we use the framework proposed by

Dietterich (2000)1, where three perspectives (statistical, computational, and

representational) were articulated to explain why ensemble methods could

lead to excellent accuracy performance. Each perspective is described in

detail below.

Statistical perspective: The statistical reason is illustrated in Figure 7.23.

ℋ is the hypothesis space where a learning algorithm searches for the best

one guided by the training data. 𝑓 is the true function. The statistical problem

occurs when there are limited data, and there are multiple best hypotheses.

1 Dietterrich, T.G. Ensemble methods in machine learning. Multiple classifier systems, 2000.

Analytics of Small Data

201

In other words, multiple models can achieve the best accuracy on the training

data. This is illustrated by the inner circle in Figure 7.23. By building an

ensemble of multiple learners, e.g., ℎ1 , ℎ2 , and ℎ3 , the average of the

hypotheses is a good approximation to the true hypothesis 𝑓. Therefore, the

average of the multiple hypotheses essentially approximates a solution with

the minimum variance in the inner circle.

Figure 7.23: Ensemble learning approximates the true model with a

combination of good models (statistical perspective)

Figure 7.24: Ensemble learning approximates the true model with a

combination of good models (computational perspective)

Computational perspective: A computational perspective is shown in

Figure 7.24. This is related to the way we build base models, which is usually

a greedy approach such as the recursive splitting procedure we have shown

in decision tree models. Many machine learning models are complex models

202

that present NP-hard optimization problems in training these models

including neural networks and decision tree models. E.g., in decision trees, at

each node, the node is split according to the maximum information gain.

However, only the current node is evaluated, and it may result in suboptimal

situations for further splitting of descendant nodes. Growing an optimal tree

model is thus NP-hard and computationally expensive. This computational

prospective is shown in Figure 7.24, while the learning algorithm of greedy

and heuristic nature with a certain parameter setting searches for the best

hypothesis in the hypothesis space. The search paths of three hypotheses are

illustrated in Figure 7.24. The differences of the three hypotheses can be

attributed to different parameter settings or different input data (e.g.,

bootstrap samples). However, growing multiple learning algorithms and

averaging them in joint decision makings, may reasonably approximate the

true hypothesis 𝑓.

Figure 7.25: Ensemble learning approximates the true model with a

combination of good models (representational perspective)

Representational perspective: Due to the size of the dataset or the

limitations of a learning algorithm, sometimes the hypothesis space ℋ does

not cover the true function, as shown in Figure 7.25. For example, linear

models cannot learn non-linear patterns, and decision trees with limited data

have difficulty learning linear patterns. Using a weighted sum of the outcomes

from the base learners may be able to approximate a function outside ℋ.

Analytics of Small Data

203

This is shown in Figure 7.25, while the true function 𝑓 is outside the space,

but a combination of ℎ1, ℎ2 and ℎ3 can approximate the true function.

Now we discuss three methods, single decision trees, random forests, and

AdaBoost (adaptive boosting) under the framework of ensemble learning.

Single decision tree: A single decision tree lacks capability to overcome

overfitting in terms of all the three perspectives. From the statistical

perspective, a decision tree algorithm constructs each node using the

maximum information gain and is sensitive to the training data. While the

training dataset is limited, the possible models achieving the best accuracy

can be large. Consequently, the learning algorithm may end up with any one

of these models, which maybe far away from the true hypothesis.

Single decision trees also have the computational issue. Decision trees are

greedy implementations, seeking for maximum impurity gain at each node.

Decisions made in upstream nodes would affect downstream nodes very

much. And it is NP-hard to find an optimal decision tree which achieves the

maximum impurity gain at all nodes.

Representational perspective also shows limitations of the decision tree

model. Although decision trees can approximate a wide range of functions,

it needs sufficient data to achieve an accurate approximation. Given limited

training data, the possible hypothesis space of a single decision tree may not

be able to cover the true function, e.g., if the true function is a linear or any

smooth function.

Random forests: Random forests construct multiple hypotheses by two

ways. First, each tree in random forests is built on a different bootstrapped

sample. Actually, this framework that builds each base learner based on a

bootstrapped sample is referred to as bagging in general. Second, at each

node, a subset of variables is randomly selected and the best variable from

the subset is used for splitting. It addresses the statistical issue. Note that,

each tree is injected with randomness, and therefore, is not necessarily in the

best-accuracy hypothesis circle, but lies in the hypothesis space with

reasonably good accuracy. Averaging the outcomes from all trees (or

204

hypotheses) would achieve the minimum variance in the reasonably-good-

accuracy space. Assuming the best-accuracy space has a similar shape with

the reasonably-good space just with a smaller size, the solution may also

achieve a reasonably small variance in the best-accuracy space. This is

illustrated in Figure 7.26.

Figure 7.26: Analysis of the random forest in terms of the statistical

perspective

Figure 7.27: Analysis of the random forest in terms of the computational

perspective

Random forests can also address the computational issue. As shown in

Figure 7.27, the inner circle represents the space that is computationally

difficult to reach. However, averaging multiple hypotheses could get into the

inner space.

Analytics of Small Data

205

Random forests do not necessarily, or actively, solve the representational

issue. If the true function lies outside ℋ, averaging the outcomes from all

trees won’t necessarily approximate the true function. Figure 7.28 shows that

random forests would construct multiple hypotheses that randomly spread

over the ℋ space. Averaging them won’t reach the true function 𝑓.

Figure 7.28: Analysis of the random forest in terms of the representational

perspective

Figure 7.29: Analysis of the AdaBoost in terms of the representational

perspective

AdaBoost: Unlike random forests that build each tree independently,

AdaBoost builds trees sequentially. For each tree, the training dataset is

sampled not by bootstrap, but by a weight determined by the error rates from

previous trees. Data points that are difficult to be correctly predicted by the

previous trees will be given more weights in the new training dataset for new

206

trees. When all the base learners are trained, the aggregation of these models

in predicting on a data instance 𝒙 is a weighted sum of base learners

ℎ(𝒙) = ∑ 𝑤𝑖ℎ𝑖(𝒙)𝑖 ,

where the weight 𝑤𝑖 is determined by the accuracy of learner ℎ𝑖(𝒙).

Similar to random forests, AdaBoost solves the computational issue by

generating many base learners that are built on randomly generated datasets.

Different from random forests, AdaBoost actively solves the representational

issue as it tries to reduce the residual errors coming from previous trees.

Figure 7.29 shows that, AdaBoost could construct more hypotheses around

the true function, and also could put more weight to the hypotheses that are

closer to the true function by using the weighted sum of base learners in

aggregation of the base learners.

But AdaBoost is not as good as random forests in terms of addressing the

statistical issue. AdaBoost handles the overfitting issue through the concept

of margin. Suppose each data point is labeled as -1 or 1, then the margin of

a classifier of a data point (𝑥𝑖, 𝑦𝑖) is defined as

𝑚𝑖 = 𝑦𝑖ℎ(𝑥𝑖).

It can be shown that AdaBoost tries to minimize

∑ exp (−𝑦𝑖 ∑ 𝑤𝑗ℎ𝑗(𝑥𝑗)𝑗)𝑖 ,

which can be considered as an effort to minimize the margin on the training

data. However, as AdaBoost aggressively solves the representational issue,

and optimizes for the training data, it is more likely to overfit, and may be

less stable than random forests that place more emphasis on addressing the

statistical issue.

III.3 R Lab

A single decision tree (rpart), random forests (randomForest), and

AdaBoost (gbm) are applied to the AD dataset AD_bl.csv. First, we change

the percentage of training data, and 50 replicates of data are generated. The

boxplots of the classification error rates for single decision tree, random

Analytics of Small Data

207

forests, and AdaBoost are plotted at different percentages of training data by

the following R code, which is shown in Figure 7.30.

theme_set(theme_gray(base_size = 15))

path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)
rm_indx <- which(colnames(data) %in% c("ID", "TOTAL13", "MMSCORE
"))
data <- data[, -rm_indx]
data$DX_bl <- as.factor(data$DX_bl)

set.seed(1)

err.mat <- NULL
for (K in c(0.2, 0.3, 0.4, 0.5, 0.6, 0.7)) {

 testing.indices <- NULL
 for (i in 1:50) {
 testing.indices <- rbind(testing.indices, sample(nrow(dat
a), floor((1 -
 K) * nrow(data))))
 }

 for (i in 1:nrow(testing.indices)) {

 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 tree <- rpart(DX_bl ~ ., data[-testing.ix,])
 pred <- predict(tree, data[testing.ix,], type = "class")
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("tree", K, error))

 rf <- randomForest(DX_bl ~ ., data[-testing.ix,])
 pred <- predict(rf, data[testing.ix,])
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("RF", K, error))

 data1 <- data
 data1$DX_bl <- as.numeric(as.character(data1$DX_bl))
 boost <- gbm(DX_bl ~ ., data = data1[-testing.ix,], dist
 = "adaboost",
 interaction.depth = 6, n.tree = 2000) #cv.folds = 5,

208

 # best.iter <- gbm.perf(boost,method='cv')
 pred <- predict(boost, data1[testing.ix,], n.tree = 200
0, type = "response") # best.iter n.tree = 400,
 pred[pred > 0.5] <- 1
 pred[pred <= 0.5] <- 0
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("AdaBoost", K, error))
 }
}
err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "training_percent", "error")
err.mat <- err.mat %>% mutate(training_percent = as.numeric(as.ch
aracter(training_percent)),
 error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(training_percen
t = as.factor(training_percent)),
 aes(y = error, x = training_percent, color = method)) + geom_
point(size = 3)

Figure 7.30: Boxplots of the classification error rates for single decision

tree, random forests, and AdaBoost

It can be seen in Figure 7.30 that, all error rates are reduced as the

percentage of the training data increases. The single decision tree is clearly

less accurate than the other two ensemble methods. RF has lower error rates

than AdaBoost in general. However, as the training data size increases, the

Analytics of Small Data

209

gap between RF and AdaBoost seems to decrease slightly. This may indicate

that when the training data size is small, RF is more stable due to its advantage

of addressing the statistical issue.

Now we add model complexity to each model to see its impacts on the

models’ performance. First, we change the complexity parameter (cp) in

decision tree. A smaller cp indicates a larger tree. It can be seen that the error

rate decreases when the tree gets more complex, and only slightly increases

after cp is greater than 0.02. This may indicate that, for this dataset, the main

issue for decision tree may stem from the representational perspective,

meaning that, a single decision is not able to capture enough information (as

much as ensemble methods) using the training data. But the statistical issue

is not severe, given that the error does not increase substantially given a

complexity parameter value that could result in a large tree.

set.seed(1)
testing.indices <- NULL
for (i in 1:50) {
 testing.indices <- rbind(testing.indices, sample(nrow(data),
floor((0.3) *
 nrow(data))))
}

err.mat <- NULL
for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 cp.v <- rev(c(0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.
08, 0.09, 0.1))
 for (j in cp.v) {
 tree <- rpart(DX_bl ~ ., data[-testing.ix,], cp = j)
 pred <- predict(tree, data[testing.ix,], type = "class")
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("Tree", j, error))
 }
}

err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "cp", "error")
err.mat <- err.mat %>% mutate(cp = as.numeric(as.character(cp)),

210

error = as.numeric(as.character(error)))
err.mat$cp <- factor(err.mat$cp, levels = sort(cp.v, decreasing =
 TRUE))

ggplot() + geom_boxplot(data = err.mat, aes(y = error, x = cp, co
lor = method)) +
 geom_point(size = 3)

Figure 7.31: Boxplots of the classification error rates for single decision

tree models with different model complexity (by controlling cp)

Figure 7.32: Boxplots of the classification error rates for AdaBoost with

different number of trees

Analytics of Small Data

211

We also adjust the number of trees in AdaBoost and show the results in

Figure 7.32. It can be seen that the error rates first go down as the number

of trees increases to 400. However, the error rates increase after that, and

decrease again. This may indicate that AdaBoost still have a statistical issue

as the error rates are not stable.

err.mat <- NULL
set.seed(1)
for (i in 1:nrow(testing.indices)) {
 data1 <- data
 data1$DX_bl <- as.numeric(as.character(data1$DX_bl))
 ntree.v <- c(200, 300, 400, 500, 600, 800, 1000, 1200, 1400,
1600, 1800,
 2000)
 for (j in ntree.v) {
 boost <- gbm(DX_bl ~ ., data = data1[-testing.ix,], dist
 = "adaboost",
 interaction.depth = 6, n.tree = j)
 # best.iter <- gbm.perf(boost,method='cv')
 pred <- predict(boost, data1[testing.ix,], n.tree = j, t
ype = "response")
 pred[pred > 0.5] <- 1
 pred[pred <= 0.5] <- 0
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("AdaBoost", j, error))
 }
}
err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "num_trees", "error")
err.mat <- err.mat %>% mutate(num_trees = as.numeric(as.character
(num_trees)),
 error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(num_trees = as.
factor(num_trees)),
 aes(y = error, x = num_trees, color = method)) + geom_point(s
ize = 3)

Now let’s look at random forests with different number of trees. Results

are shown in Figure 7.33. Similar to AdaBoost, RF has high error rates

initially at a small number of trees. Then, the error rates are reduced as more

212

trees are added. However, the error rates become stable when more trees are

added. This may indicate that RF handles the statistical issue well.

Figure 7.33: Boxplots of the classification error rates for random forest

with different number of trees

err.mat <- NULL
set.seed(1)
for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 ntree.v <- c(5, 10, 50, 100, 200, 400, 600, 800, 1000)
 for (j in ntree.v) {
 rf <- randomForest(DX_bl ~ ., data[-testing.ix,], ntree
= j)
 pred <- predict(rf, data[testing.ix,])
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("RF", j, error))
 }
}
err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "num_trees", "error")
err.mat <- err.mat %>% mutate(num_trees = as.numeric(as.character
(num_trees)),
 error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(num_trees = as.
factor(num_trees)),

Analytics of Small Data

213

 aes(y = error, x = num_trees, color = method)) + geom_point(s
ize = 3)

Recall that, a requirement to solve the statistical issue in random forests

is that a diverse set of learners need to be built. As we have mentioned, in

random forests, there are two approaches to increase diversity, one is to

bootstrap samples for each tree while another one is to conduct random

feature selection for splitting each node. First, we investigate the effectiveness

of using randomly bootstrapped samples. We change sampling strategy from

sampling with replacement to sampling without replacement, and change the

sampling size from 10% to 100% (with the number of features tested at each

node being the default value of √𝑝
2 where 𝑝 is the number of features). The

results as shown in Figure 7.34 do not show that the increased sample size

has an impact on the error rates on this particular dataset.

err.mat <- NULL
set.seed(1)
for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 sample.size.v <- seq(0.1, 1, by = 0.1)
 for (j in sample.size.v) {
 sample.size <- floor(nrow(data[-testing.ix,]) * j)
 rf <- randomForest(DX_bl ~ ., data[-testing.ix,], sampsi
ze = sample.size,
 replace = FALSE)
 pred <- predict(rf, data[testing.ix,])
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("RF", j, error))
 }
}
err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "sample_size", "error")
err.mat <- err.mat %>% mutate(sample_size = as.numeric(as.charact
er(sample_size)),
 error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(sample_size = a
s.factor(sample_size)),
 aes(y = error, x = sample_size, color = method)) + geom_point
(size = 3)

214

Figure 7.34: Boxplots of the classification error rates for random forest

with different sample sizes

We then set the number of samples used at each tree the same as the size

of the original training data set, and change the number of features in growing

the random forest models. As shown in Figure 7.35, we can see that when

the number of features is sufficiently large, the error rates start to increase,

which could be due to a low diversity and indicate its compromised capability

to address the statistical issue.

err.mat <- NULL
set.seed(1)
for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 num.fea.v <- 1:(ncol(data) - 1)
 for (j in num.fea.v) {
 sample.size <- nrow(data[-testing.ix,])
 rf <- randomForest(DX_bl ~ ., data[-testing.ix,], mtry =
 j, sampsize = sample.size,
 replace = FALSE)
 pred <- predict(rf, data[testing.ix,])
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("RF", j, error))
 }
}
err.mat <- as.data.frame(err.mat)

Analytics of Small Data

215

colnames(err.mat) <- c("method", "num_fea", "error")
err.mat <- err.mat %>% mutate(num_fea = as.numeric(as.character(n
um_fea)), error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(num_fea = as.fa
ctor(num_fea)),
 aes(y = error, x = num_fea, color = method)) + geom_point(siz
e = 3)

Figure 7.35: Boxplots of the classification error rates for random forest

with different number of features

In the next experiment, we fix the number of tested features to be the

total number of variables, and change the percentage of samples to be used

at each tree. As shown in Figure 7.36, the error rate is relatively large when

the percentage of samples is small (10%). But as more samples are used, the

error rates increase, and reach the highest error rate when 100% of the

samples are used (i.e., which leads to least diversity among the base learners).

err.mat <- NULL
set.seed(1)
for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 target.testing <- data$DX_bl[testing.ix]

 sample.size.v <- seq(0.1, 1, by = 0.1)
 for (j in sample.size.v) {
 traing.data <- data[-testing.ix,]

216

 sample.size <- floor(nrow(traing.data) * j)
 rf <- randomForest(DX_bl ~ ., traing.data, mtry = ncol(tr
aing.data) -
 1, sampsize = sample.size, replace = FALSE)
 pred <- predict(rf, data[testing.ix,])
 error <- length(which(as.character(pred) != target.testin
g))/length(target.testing)
 err.mat <- rbind(err.mat, c("RF", j, error))
 }
}
err.mat <- as.data.frame(err.mat)
colnames(err.mat) <- c("method", "num_fea", "error")
err.mat <- err.mat %>% mutate(num_fea = as.numeric(as.character(n
um_fea)), error = as.numeric(as.character(error)))

ggplot() + geom_boxplot(data = err.mat %>% mutate(num_fea = as.fa
ctor(num_fea)),
 aes(y = error, x = num_fea, color = method)) + geom_point(siz
e = 3)

Figure 7.36: Boxplots of the classification error rates for random forest

with different sample sizes

IV. Exercises

Data analysis

1. Find ten classification datasets from the UCI data repository or R

datasets. Conduct a detailed analysis using the logistic regression

model, SVM, decision tree, random forest, and AdaBoost. Conduct

Analytics of Small Data

217

model selection and validation. Use cross-validation to select the

best models. Conduct residual analysis of your final models, and

comment on your results.

Programming

2. Write your own R script to implement the linear SVM model.

3. Extend your SVM code to nonlinear SVM models with Gaussian

kernel and polynomial kernel. Compare your results with ksvm().

4. Write your own R script to implement the AdaBoost model.

Compare your results with gbm().

CHAPTER 8: SCALABILITY
LASSO AND PCA

I. Overview

Chapter 8 is about “Scalability”. It is to enhance our capacity to deal with

large-scale problems – strength to be scalable. LASSO and PCA will be

introduced in this chapter. LASSO stands for the Least Absolute Shrinkage

and Selection Operator, which is a main representative method for feature

selection. PCA stands for the Principle Component Analysis, which is a main

representative method for dimension reduction. Both methods can reduce

the dimensionality of the dataset, but follow different styles. LASSO, as a

feature selection method, focuses on deletion of irrelevant or redundant

features in the dataset. PCA, as a dimension reduction method, keeps all the

features but combine them into a smaller number of aggregated new features.

Analytics of Small Data

219

II. LASSO

II.1 Rationale and Formulation

LASSO was invented in 1996 1 that was used to sparsify the linear

regression model and allowed the regression model to select significant

predictors automatically. The formulation of LASSO is

�̂� = argmin
𝜷
{‖𝒚 − 𝐗𝜷‖2

2 + 𝜆‖𝜷‖1},

where 𝒚 ∈ ℝ𝑁×1 is the measurement vector of the response, 𝐗 ∈ ℝ𝑁×𝑝 is

the data matrix of the 𝑁 measurement vectors of the 𝑝 predictors, 𝜷 ∈

ℝ𝑝×1 is the regression coefficient vector. Here, ‖𝜷‖1 = ∑ |𝛽𝑖|
𝑝
𝑖=1 . Note that,

here, the intercept (i.e., 𝛽0) is not included, since we assume that the data is

normalized (i.e., ∑ 𝑥𝑛𝑗/𝑁
𝑁
𝑛=1 = 0, ∑ 𝑥𝑛𝑗

2 /𝑁𝑁
𝑛=1 = 1 for 𝑗 = 1,2, … , 𝑝 and

∑ 𝑦𝑛/𝑁
𝑁
𝑛=1 = 0), and thus, the intercept is not needed.

Figure 8.1: Path solution trajectory of the coefficients of LASSO,

identifying brain regions that show longitudinal declines that can separate

early-stage Alzheimer’s patients from normal elderly.

1 Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society (Series B), 1996.

220

It could be seen that LASSO embodies two major components in its

formulation. The 1st term is the least squares loss function from linear

regression, that is used to measure the goodness-of-fit of the model. The 2nd

term is the sum of absolute values of the elements in 𝜷, representing the

model complexity, i.e., the smaller the ‖𝜷‖1, more zeros in 𝜷, leading to a

simpler model. The parameter, 𝜆 , is called the penalty parameter that is

specified by user of LASSO. In other words, LASSO suggests the best model

by an optimal balance between model fit and model complexity, and this

balance could be flexibly tuned by tuning the parameter 𝜆. Furthermore, as

shown in Figure 8.1, LASSO can generate the path solution trajectory that

visualizes the solutions of 𝜷 for a continuum of values of 𝜆, giving us a global

sense of the relationships between variables. Also, model selection criteria

such as Akaike Information Criteria (AIC) or cross-validation can be used to

identify the best 𝜆.

II.2 Theory and Method

Why LASSO uses the L1 norm: The popularity of LASSO and its

enormous impact on statistical/machine learning research in the last decade

needs no exaggeration. Some researchers in optimization and operations

research often found puzzling is why all of sudden LASSO was invented and

gave birth to the area of sparse learning. To answer this question, LASSO is

often compared with another similar model, called Ridge regression1 that

has been developed almost half a century ago.

The formulation of Ridge regression is

�̂� = argmin
𝜷
{‖𝒚 − 𝐗𝜷‖2

2 + 𝜆‖𝜷‖2},

where ‖𝜷‖2 = ∑ |𝛽𝑖|
2𝑝

𝑖=1 is called the 𝐿2 norm.

1 Hoerl, A.E. and Kennard, R.W. Ridge regression: biased estimation for

nonorthogonal problems. Technometrics, 1970.

Analytics of Small Data

221

At the first glance, it seems that the Ridge regression bears the same spirit

of LASSO – they both penalize the magnitudes of the regression parameters.

However, it has been noticed that, in the Ridge regression model, the

regression parameters in 𝜷 will not achieve exactly zero. Even if you impose

a very large 𝜆, many elements in 𝜷 may be close to zero with a very tiny

numerical magnitude, but not zero. Although the numerical magnitudes of

these elements are close to zero, and thus, seems to be insignificant, they are

still in the estimation system and generate impacts on the estimation of other

regression parameters. Thus, it is often reported that when you run Ridge

regression and LASSO regression, you may not observe the same set of

predictors that are selected by both methods. Ridge regression is more often

used as a stabilization strategy to handle the multicollinearity issue or any

other issues that result in numerical instability in parameter estimation, while

LASSO is used as a variable selection strategy.

Shooting algorithm to solve the optimization problem of LASSO:

We could denote the objective function of LASSO as

𝐿(𝜷) = ‖𝒚 − 𝐗𝜷‖2
2 + 𝜆‖𝜷‖1.

To see how the LASSO can be iteratively solved, let’s first consider a

simple case where there is only one predictor. Then, the objective function

becomes

𝐿(𝛽) = ‖𝒚 − 𝐗𝛽‖2
2 + 𝜆|𝛽|.

To find the optimal solution, we can solve the equation as

𝜕𝐿(𝛽)

𝜕𝛽
= 0.

The complication is the L1-norm term, |𝛽|, which has no gradient when

𝛽 = 0. Thus, we can discuss different scenarios and identify the solutions.

222

 If 𝛽 > 0 , then
𝜕𝐿(𝛽)

𝜕𝛽
= 2𝛽 − 2𝐗𝑇𝒚 + 𝜆 . Thus,

𝜕𝐿(𝛽)

𝜕𝛽
= 0 will

lead to the solution that 𝛽 =
(2𝐗𝑇𝒚−𝜆)

2
. But if 2𝐗𝑇𝒚 − 𝜆 < 0,

this will result in a contradiction, and thereby, 𝛽 = 0.

 If 𝛽 < 0, then
𝜕𝐿(𝛽)

𝜕𝛽
= 2𝛽 − 2𝐗𝑇𝒚 − 𝜆. Similarly as above, we

can conclude that 𝛽 =
(2𝐗𝑇𝒚+𝜆)

2
. But if 2𝐗𝑇𝒚 + 𝜆 > 0, this will

result in a contradiction, and thereby, 𝛽 = 0.

 If 𝛽 = 0, then we have had the solution and no longer need the

calculate the gradient.

In summary, we can derive the solution of 𝛽 as

�̂� =

{

(2𝐗𝑇𝒚−𝜆)

2
, 𝑖𝑓2𝐗𝑇𝒚 − 𝜆 > 0

(2𝐗𝑇𝒚+𝜆)

2
, 𝑖𝑓2𝐗𝑇𝒚 + 𝜆 < 0

0, 𝑖𝑓 𝜆 ≥ |2𝐗𝑇𝒚|

.

Now we are ready to generalize this practice to general case with more

predictors.

The spirit is to keep as much the easiness of solving for one predictor as

we derived above as possible. Thus, revealing the resemblance of the general

problem with our one-predictor special problem is important. Particularly,

we decide to follow an iterative structure that updates each 𝛽𝑗 at a time when

fixing all the other parameters as their latest values. Thus, suppose that we

are now at the 𝑡th iteration and we are trying to optimize for 𝛽𝑗 , we can

rewrite the general optimization problem’s objective function as a function

of 𝛽𝑗

𝐿(𝛽𝑗) = ‖𝒚 − ∑ 𝐗(:,𝑘)𝛽𝑘
(𝑡−1)

𝑘≠𝑗 − 𝐗(:,𝑗)𝛽𝑗‖
2

2
+ 𝜆∑ |𝛽𝑘

(𝑡−1)
|𝑘≠𝑗 + 𝜆|𝛽𝑗|.

Here, 𝛽𝑘
(𝑡)

 is the value of 𝛽𝑘 in the 𝑡th iteration. The objective function

above can be simplified as

Analytics of Small Data

223

𝐿(𝛽𝑗) = ‖𝒚 − 𝐗(:,𝑗)𝛽𝑗‖2
2
+ 𝜆|𝛽𝑗|,

which just resembles the structure as the one-predictor special case we

discussed. Thus, we can readily derive that

�̂�𝑗
(𝑡)
= {

𝑞𝑗 − 𝜆 2⁄ , 𝑖𝑓𝑞𝑗 − 𝜆 2⁄ > 0

𝑞𝑗 + 𝜆 2⁄ , 𝑖𝑓𝑞𝑗 + 𝜆 2⁄ < 0

0, 𝑖𝑓 𝜆 ≥ |2𝑞𝑗|

,

where 𝑞𝑗 = 𝐗(:,𝑗)
𝑇 (𝒚 − ∑ 𝐗(:,𝑘)𝛽𝑘

(𝑡−1)
𝑘≠𝑗).

An Example to implement the Shooting algorithm: Here let’s

consider one exemplary data as shown in below.

Table 8.1: A dataset example for LASSO

𝑋1 𝑋2 𝑌

-0.707 0 -0.77

0 0.707 -0.33

0.707 -0.707 0.62

The dataset of 𝑌 is actually randomly sampled from the true model,

𝑌 = 0.8𝑋1 + 𝜀, where 𝜀~𝑁(0,0.5).

Thus, it can be seen that the variable 𝑋2 is irrelevant.

Now let’s implement the Shooting algorithm for LASSO on this data. The

objective function of LASSO on this case is

∑ [𝑦𝑛 − (𝛽1𝑥𝑛,1 + 𝛽2𝑥𝑛,2)]
2𝑁

𝑛=1 + 𝜆(|𝛽1| + |𝛽2|).

Note that, here, for simplicity, we don’t need to include the offset

parameter 𝛽0 in the model as the predictors are standardized with mean as

zero.

224

 Suppose that we choose 𝜆 = 0.88 . First, we initiate the regression

parameters as �̂�1
(0)
= 0 and �̂�1

(0)
= 0.

In the first iteration, we aim to update �̂�1. We can obtain that

𝒚 − 𝐗(:,2)�̂�2
(0)
= [

−0.71
−1.037
1.327

].

Thus,

𝑞1 = 𝐗(:,1)
𝑇 (𝒚 − 𝐗(:,2)�̂�2

(0)
) = 1.44.

As

𝑞1 − 𝜆 2⁄ = 1 > 0,

we know that

�̂�1
(1)
= 𝑞1 − 𝜆 2⁄ = 1.

Similarly, we can update �̂�2. We can obtain that

𝒚 − 𝐗(:,1)�̂�1
(0)
= [

−1.477
−0.33
−0.087

].

Thus,

𝑞2 = 𝐗(:,1)
𝑇 (𝒚 − 𝐗(:,1)�̂�1

(0)
) = −0.178.

As

𝜆 ≥ |2𝑞2|,

we know that

�̂�2
(1)
= 0.

Thus, on this simple example, with only one iteration, the LASSO method

can identify the irrelevant variable and delete it from the model.

Analytics of Small Data

225

II.3 R Lab

In what follows, we apply LASSO on an extended AD dataset that has

329 variables. It includes 313 variables that are derived from the MRI images

of the subjects, corresponding to the grey matter volumes of 313 brain

regions. We have known that many of these variables are correlated with each

other as our prior knowledge. Also, depending on the outcome to predict,

not all the brain regions are useful. Thus, this extended AD dataset provides

a good example for us to showcase the use of LASSO and PCA.

First, let’s load the data into the R workspace:

Chapter 8 Dataset of Alzheimer's Disease Objective: prediction
of
diagnosis filename
AD <- read.csv("AD_hd.csv", header = TRUE)

This time, let’s formulate an interesting prediction question: can we use

the MRI readings to predict the age of the subject. Using the following R

code, we may get a sense of the relationship of the variables by drawing the

scatterplots of variables that correlate with the outcome variable “AGE” most

strongly according to the Pearson correlation.

Supplement the model with some visualization of the statistical
 patterns
Scatterplot matrix to visualize the relationship between outcom
e variable
with continuous predictors
require(ggplot2)
install.packages('GGally')
require(GGally)
draw the scatterplots and also empirical shapes of the distribu
tions of
the variables
tempRank <- sort(abs(cor(AD[, 5], AD[, 17:329])), decreasing = TR
UE, index.return = TRUE)
p <- ggpairs(AD[, c(5, 16 + tempRank$ix[1:8])], upper = list(cont
inuous = "points"),
 lower = list(continuous = "cor"))
print(p)

226

Then we can see that, the correlations between the MRI variables with

AGE are significant, and the correlations among the MRI variables are also

strong, which confirms with our prior knowledge and also indicates

significant redundancy in the variables.

Figure 8.2: Scatterplots of some MRI variables

Now let’s split the data into training and testing datasets.

AD[, 17:dim(AD)[2]] <- scale(AD[, 17:dim(AD)[2]])
Use the glmnet R pacakge to build LASSO model split into traini
ng and test
sets
AD$train <- ifelse(runif(nrow(AD)) < 0.8, 1, 0)
separate training and test sets
trainset <- AD[AD$train == 1, -grep("train", names(AD))]
testset <- AD[AD$train == 0, -grep("train", names(AD))]
trainX <- as.matrix(trainset[, 17:dim(trainset)[2]])
testX <- as.matrix(testset[, 17:dim(testset)[2]])
trainY <- as.matrix(trainset[, 5])
testY <- as.matrix(testset[, 5])

Analytics of Small Data

227

The glmnet package can be used to implement the LASSO method:

build model install.packages('glmnet')
require(glmnet)
fit = glmnet(trainX, trainY, nlambda = 100)

We can use the plot() function to see the path solution trajectory of the

regression coefficients by LASSO for different values of lambda, as shown

in Figure 8.3.

plot(fit, label = TRUE)

Figure 8.3: Path solution trajectory of the regression coefficients by

LASSO

The numerical details of the trained LASSO regression models can also

be seen by print(fit). Here, we skip the output due to space limit. As we

have seen, the glmnet trained not only one LASSO model, but 100 models

by default. We could use coef() to query details of each of the models. For

example, coef(fit, s = 0.05) queries the model that has lambda = 0.05.

We draw the histogram of the Pearson correlations of the selected

variables in this model, which is shown in Figure 8.4.

228

Check out the marginal correlations between the selected variab
les with
the outcome
idx.var <- which(coef(fit, s = 0.05) != 0) - 1
tempData <- as.numeric(abs(cor(trainY, trainX[, idx.var])))
qplot(tempData, geom = "histogram")

Figure 8.4: Histogram of the Pearson correlations of the selected variables

with AGE

Figure 8.5: Histogram of the Pearson correlations of all variables with AGE

Analytics of Small Data

229

We can see that, the LASSO model is a multivariate method that selects

variables not only based on their marginal correlations with the outcome, but

also their syngeneic effects. Figure 8.5 shows the histogram of the Pearson

correlations of all variables for a contrast.

Compare with the overview of the correlations between variables
 with the
outcome
tempData <- as.numeric(abs(cor(trainY, trainX)))
qplot(tempData, geom = "histogram")

The predict() function can be used to predict on the testing dataset

using different models.

Predict on the testing data
predict(fit, newx = testX, s = c(0.1, 0.2, 0.4))

1 2 3
3 81.24935 81.23730 78.97272
9 69.19876 69.64454 70.43511
17 69.89315 68.66627 67.34304
19 72.01627 70.19499 71.69000
29 73.75759 71.94729 71.05652
30 67.57181 67.22865 67.62802
31 69.72086 69.79635 71.41110
38 70.65147 72.04312 73.13276
39 84.74255 84.62814 84.28301
45 71.88253 71.29639 69.67876
48 74.83788 74.96710 72.61464
52 66.70134 69.83361 71.03180
53 72.42933 71.19085 72.60041
61 73.11982 73.33213 75.97945
62 75.87737 74.92556 75.84209
73 74.98227 75.70788 74.91021

On the other hand, to decide on the best model, glmnet implements 10-

folder cross-validation procedure using cv.glmnet().

Use cross-validation to decide which model is best
cv.fit = cv.glmnet(trainX, trainY)
plot(cv.fit)

The result is shown in Figure 8.6, which reveals a certain optimal point

on which we can decide the best model. It is also noticeable that the

230

optimality of the model is not very statistically significant, probably due to

the small sample size, or enormous heterogeneity of the AD population, or

other data issues.

Figure 8.6: MSEs by cross-validation with different values of lambda

The best model can be queried by calling on the function cv.glmnet as

shown in below (results omitted due to the space limit):

To view the selected variables and the corresponding coefficien
ts
cv.fit$lambda.min

[1] 0.6437308

coef(cv.fit, s = "lambda.min")

As LASSO has picked up the variables, we can further fit a regression

model using these variables. Here, the reason that we need to re-fit the

regression model is that, since LASSO uses the 𝐿1 norm to push those

insignificant predictors out of the model, it also results in shrinkage of the

magnitudes of the predictors that are significant. This shrinkage is bias that

makes the model less accurate in prediction. Usually, people tend to use

LASSO for model selection only, e.g., to identify the predictors that are

Analytics of Small Data

231

significant. Then, with the identified predictors, a classic regression model is

further applied on this reduced set of predictors to build the final model.

We follow this two-step strategy. As shown in below, it can be seen that

these variables could lead to a model that has the R-squared as large as

0.9117. It is also possible, from the results shown in below, that the model

can be further simplified by deleting more insignificant variables.

fit a linear regression model
trainX.reduced <- data.frame(trainX[, which(coef(cv.fit, s = "lam
bda.min") !=
 0) - 1])
tempData <- cbind(trainY, trainX.reduced)
lm.AD <- lm(trainY ~ ., data = tempData)
summary(lm.AD)

Call:
lm(formula = trainY ~ ., data = tempData)

Residuals:
Min 1Q Median 3Q Max
-5.4283 -1.4383 0.4106 1.0739 3.3860

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 73.48975 0.42384 173.389 < 2e-16 ***
ST103CV 0.68829 0.86621 0.795 0.43404
ST103TA 0.82101 0.86085 0.954 0.34901
ST106TA -1.73112 0.63784 -2.714 0.01164 *
ST106TS -0.34535 0.60115 -0.574 0.57057
ST110CV -0.99903 0.75223 -1.328 0.19569
ST110TA -0.79230 0.64168 -1.235 0.22797
ST113SA 0.06535 0.62399 0.105 0.91740
ST118SA -0.59835 0.69504 -0.861 0.39717
ST119CV -1.05435 0.83192 -1.267 0.21626
ST119SA -0.77869 0.77768 -1.001 0.32591
ST128SV 1.63101 0.69748 2.338 0.02733 *
ST129TS 0.98078 0.66285 1.480 0.15098
ST130TS -0.11623 0.58658 -0.198 0.84446
ST14TS -1.04771 0.55252 -1.896 0.06909 .
ST16SV 0.34340 0.72793 0.472 0.64104
ST17SV -1.14047 0.57236 -1.993 0.05690 .
ST26TS -0.47550 0.56765 -0.838 0.40985
ST35TS -1.38430 0.53229 -2.601 0.01515 *

232

ST39TS 1.34252 0.46659 2.877 0.00791 **
ST42SV 0.96528 0.56439 1.710 0.09912 .
ST44TS 0.61458 0.58486 1.051 0.30301
ST45CV -0.59449 0.55985 -1.062 0.29806
ST59CV 2.02101 0.70023 2.886 0.00774 **
ST62TS -0.54468 0.46893 -1.162 0.25597
ST74TS 0.10354 0.60269 0.172 0.86493
ST7SV 0.81011 0.54650 1.482 0.15027
ST83CV 0.80073 0.51498 1.555 0.13207
ST83TA -0.20721 0.79645 -0.260 0.79678
ST85TS 0.84103 0.68633 1.225 0.23141
ST98CV -0.03397 0.71845 -0.047 0.96265

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.707 on 26 degrees of freedom
Multiple R-squared: 0.9117, Adjusted R-squared: 0.8099
F-statistic: 8.95 on 30 and 26 DF, p-value: 1.203e-07

Note that, the glmnet package not only implements LASSO, but also

other related models such as Ridge regression. For instance, via the R code

below we can implement the Ridge regression by setting alpha = 0:

Do a ridge regression instead
fit.ridge = glmnet(trainX, trainY, alpha = 0, nlambda = 100)
print(fit.ridge)

Figure 8.7: Path solution trajectory of the regression coefficients by Ridge

regression

Analytics of Small Data

233

As shown in Figure 8.7, the path solution trajectory of the regression

coefficients by Ridge regression has quite a different shape from the path

solution trajectory of LASSO regression shown in Figure 8.3.

plot(fit.ridge, xvar = "lambda", label = TRUE)

Figure 8.8: Path solution trajectory of the coefficients by logistic LASSO

Figure 8.9: Classification errors by cross-validation with different values of

lambda

We can also implement the idea of LASSO on logistic regression model.

Here, we use the “DX_bl” as our outcome variable that has two classes, “NC”

and “LMCI”, denoting for the normal aging and mild cognitive impairment,

respectively. Note that, classifying between NC and LMCI is very challenging,

234

much more challenging than the classification between NC and AD that has

been discussed in previous chapters, since the LMCIs are to certain degrees

still normal individuals and are not clinically diagnosed with dementia yet.

Fit a LASSO model for logistic regression
trainY <- as.matrix(trainset[, 2])
testY <- as.matrix(testset[, 2])
fit = glmnet(trainX, trainY, nlambda = 100, family = “binomial”)
plot(fit, label = TRUE)

Also, the cross-validation can be used to decide on the best model:

Use cross-validation to decide which model is best
cv.fit = cv.glmnet(trainX, trainY, family = "binomial", type.meas
ure = "class")
plot(cv.fit)

As shown in Figure 8.9, a certain optimal point can be identified to decide

on the best model. We can further output the corresponding coefficients of

this optimal model via the R code below (results omitted due to space limit).

To view the selected variables and the corresponding coefficien
ts
coef(cv.fit, s = "lambda.min")

Similarly in LASSO, we could use predict() to predict on the testing

dataset using any model.

predict(cv.fit, newx = testX, s = "lambda.min")

1
3 -1.23155042
9 -0.32381239
17 -5.49829437
19 -0.47832582
29 -0.35677823
30 -0.82189141
31 0.62296595
38 0.52778295
39 -1.49146275
45 -2.54049855
48 1.07123484
52 -1.27364645
53 1.46493378
61 -1.21799365

Analytics of Small Data

235

62 -3.32616327
73 0.03668668

II.4 Remark

The shooting algorithm1 has been widely used in many extension models

of LASSO in the statistics community. The shooting algorithm is easy to use

and has nice interpretation of each iteration. But it could be slow in very high-

dimensional situations. Also, with more complex penalty terms such as those

L21-norm regularization or group regularization terms, the shooting

algorithm may not work anymore. In machine learning community where the

computational efficiency is of particular interest, many scalable algorithms

such as the projection operator based methods have been developed.

Interested readers can read more of these works 2 in this direction that

provided closed form iterative updating rules by projection operator on a

variety of regularization terms.

On the other hand, regarding why LASSO can produce sparse estimates

of the regression parameters while Ridge regression could not, a deep reason

was revealed in the “bible” book of statistical learning3. Here, we adopt an

easy and common sense explanation (which has also been a very famous

example) as shown in the Figure 8.10. It shows the application of LASSO

and Ridge regression models on a problem with 2 predictors. The contour

plot corresponds to the least squares loss function which is shared by classic

regression model, LASSO, and Ridge models. �̂� in the center of the contour

is the least squares estimator of the regression parameters.

Figure 8.10 shows that why LASSO can generate sparse estimation of the

model. As the objective function of LASSO consists of two terms, the

1 Fu, WJ. Penalized regressions: the bridge versus the lasso. Journal of Computational

and Graphical Statistics, 1998.
2 http://www.yelab.net/software/SLEP/
3 Hastie, T., Tibshiranim R. and Friedman, J. The elements of statistical learning, 2nd

edition. Springer, 2009.

236

optimal solution lies on the intersection of the geometric areas corresponding

to the two terms. As LASSO uses 𝐿1 norm, it results in those “sharp” corner

points that mostly like to be the point of contacts of the two geometric areas.

Those point of contacts are themselves sparse solutions, e.g., in Figure 8.10,

the point of contact implies that 𝛽1 = 0.

As a comparison, in Ridge regression, as the geometric area

corresponding to the 𝐿2 norm has no such “sharp” corner points, the model

has no strong incentive for where to allocate the point of contacts of the two

geometric areas. Thus, given the infinite number of potential point of

contacts of the two geometric areas, it is expected that Ridge regression will

not result in sparse solutions with exact zeros in �̂�.

Figure 8.10: Why LASSO could generate sparse estimates while Ridge

tends to not

Following this idea, the 𝐿1 norm is later extended to 𝐿𝑞 norm for 𝑞 ≤ 1.

For any 𝑞 ≤ 1, we could generate those “sharp” corner points to enable

sparse solutions of �̂�. The advantage of using 𝑞 < 1 is to reduce bias in the

model. Recall that, we have mentioned earlier, that LASSO will lead to bias

in parameter estimation. Using 𝑞 < 1 is a good approach to reduce this bias,

Analytics of Small Data

237

while it still produces “sharp” corner points but penalizes less on the

significant predictors. The cost of using 𝑞 < 1 is that it will result in non-

concave penalty terms, making the overall objective function of the sparse

model non-concave.

Figure 8.11: Illustration of the principal components in a dataset with 2

variables; the main variation source is represented by the 1st PC dimension

III. Principal Component Analysis

III.1 Rationale and Formulation

The PCA method is built on the assumption that, for a multivariate

dataset that has many variables, the dimensionality of the dataset is smaller

than it appears to be. In other words, for example, for one dataset that has

10 variables, we may have the impression that there are ten independent

sources of variation that infuse uncertainty into the data. But, PCA is built

on the idea that the underlying independent sources of variations are only a

few (e.g., 2 or 3 for 10 variables could be usual). The question is how to

identify the intrinsic sources of the variation.

As shown in Figure 8.11, PCA pursues this idea of identifying the intrinsic

sources of the variation in the framework of linear models. The characteristic

238

shape of the dataset shown in Figure 8.11 indicates that, although the data

points are located in a two-dimensional space, the data points are not totally

randomly scattered all over the place. Rather, there is a force that orients

these data points towards one direction (or, in the same effect, you may say

there is a force that pushes the data points towards one narrow zone). To

recover these forces, the PCA seeks linear combinations of the original

variables to pinpoint the directions towards which the underlying forces are

pushing the data points. In other words, another assumption of PCA is that

the relationship between the underlying dimensions and the variables (surface

dimensions) is linear.

III.2 Theory and Method

The idea shown in Figure 8.11 reveals the principle to guide the estimation

of the linear weights to combine the variables. This leads to the following

formulation:

𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{∑ 𝒙(𝑖) ∙ 𝒘(1)
𝑁
𝑛=1 },

where there are 𝑁 samples and 𝑝 variables, 𝒙(𝑛) ∈ 𝑅
1×𝑝 is the 𝑛th sample,

and 𝒘(1) ∈ 𝑅
𝑝×1 is the linear weights vector of the first PC. Note that the

constraint 𝒘(1)
𝑇 𝒘(1) = 1 is to control the scale of the vector – without which

an infinite number of solutions would exist. This also indicates that the

absolute magnitudes of the weights are meaningless. Only the relative

magnitudes are useful.

A more succinct form could be:

𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{𝒘(1)
𝑇 𝐗𝑇𝐗𝒘(1)},

where 𝐗 ∈ 𝑅𝑁×𝑝 is usually called the data matrix that concatenate all the 𝑁

samples into a matrix. 𝐗𝑇𝐗 is actually the sample covariance matrix.

Analytics of Small Data

239

Figure 8.12: Scree plot that shows the first 5 PCs maybe significant,

while the first PC is definitely a major variation source, together with the

second and third PCs as other main variations sources

To identify the second PC, we could follow the principle of iteration. The

idea is rather simple. As the first PC represents one variance source, and the

original data 𝐗 contains a linear aggregation of multiple variance sources, why

not remove the first variance source from 𝐗, then create a new data that

contains the remaining variance sources? Then, the procedure for finding

𝒘(1) could be readily used for finding 𝒘(2), since with 𝒘(1) removed, 𝒘(2)

is the largest variance source now.

This process could be generalized as:

 In order to find the 𝑘th PC, we could create a dataset as 𝐗(𝑘) =

𝐗 − ∑ 𝐗𝑘−1
𝑠=1 𝒘(𝑠)𝒘(𝑠)

𝑇 .

240

 Then, we solve 𝒘(𝑘) = arg max
𝒘(𝑘)
𝑇 𝒘(𝑘)=1

{𝒘(𝑘)
𝑇 𝐗(𝑘)

𝑇 𝐗(𝑘)𝒘(𝑘)} for

identifying 𝒘(𝑘).

In practice, we need to decide how many PCs are needed to represent the

dataset. In theory, for a dataset with 𝑝 variables, there are 𝑝 PCs that could

be extracted if the dataset has more sample size than the number of variables.

But it is often the case that only the first few PCs are needed since these few

PCs could explain away majority of the variation in the data. The scree plot

as shown in Figure 8.12 is a common tool in practice, that draws the

eigenvalues of the PCs to look for the change point beyond which the PCs

maybe statistically insignificant.

We could use the following example to practice this procedure. The

dataset is shown in the Table below:

Table 8.2: A dataset example for PCA

𝑋1 𝑋2

-1 0

3 3

3 5

-3 -2

3 4

5 6

7 6

2 2

First, we can calculate the sample covariance matrix as

𝐒 = 𝐗𝑇𝐗 = [
115 118
118 130

].

We can obtain the 𝒘(1) by

Analytics of Small Data

241

𝒘(1) = arg max
𝒘(1)
𝑇 𝒘(1)=1

{𝒘(1)
𝑇 𝐒𝒘(1)}.

The lagrangian form is

𝒘(1)
𝑇 𝐒𝒘(1) − 𝜆1𝒘(1)

𝑇 𝒘(1).

By taking the derivative of the lagrangian form with regards to 𝒘(1), it is

not hard to arrive at the equation:

𝐒𝒘(1) − 𝜆1𝒘(1) = 0.

Thus, this is an eigenvalue problem of the matrix 𝐒. We can solve it as

𝜆1 = 240.74 and 𝒘(1) = [0.68,0.73]. Further, we can get that 𝜆2 = 4.26

and 𝒘(2) = [−0.73,0.68].

III.3 R Lab

We apply PCA on the AD data that has been used in the R lab of LASSO.

There are many packages in R that can conduct PCA. Here, we use the

function PCA() in the “FactoMineR” package.

Implement principal component analysis on the AD data
install.packages('factoextra')
require(factoextra)
require(FactoMineR)
require(ggfortify)
tempData <- AD[, c(17:dim(AD)[2])]
Conduct the PCA analysis
pca.AD <- PCA(tempData, graph = FALSE, ncp = 10)

The construct pca.AD has the eigenvalues and the principal components.

We can use fviz_screeplot() to visualize the contributions of the principal

components, as shown in Figure 8.13.

Examine the contributions of the PCs in explaining the variatio
n in data
fviz_screeplot(pca.AD, addlabels = TRUE, ylim = c(0, 50))

242

It can be seen from Figure 8.13 that the first PC could explain away 16.7%

of the total variation and the second PC could explain away 12.7% of the

total variation. It seems that there is a change point at the third PC, showing

that the following PCs could be insignificant.

Figure 8.13: Scree plot of the PCA analysis on the AD dataset

We could also show the numerical details of the loadings of the variables

in the PCs.

Examine the loadings of the variables in the PCs
var <- get_pca_var(pca.AD)
head(var$contrib)

Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
ST101SV 5.217488e-01 0.00543192 0.022513018 0.00695649 0.55635835
ST102CV 6.331461e-01 0.26061413 0.167089523 0.02972375 0.11789451
ST102SA 1.029105e+00 0.00198550 0.011535559 0.22360153 0.17723377
ST102TA 1.080058e-02 1.06804755 0.237858049 0.38424318 0.00483804
ST102TS 5.979293e-05 0.06038710 0.299593782 0.52436240 0.02805072
ST103CV 8.089453e-02 0.05503171 0.001267605 0.54330434 3.08447026
Dim.6 Dim.7 Dim.8 Dim.9 Dim.10
ST101SV 1.835299776 0.498169844 0.055960987 0.018902630 0.0517726064
ST102CV 0.037225860 0.182728808 0.039477823 0.029123146 0.1602108140
ST102SA 0.336057060 0.006782785 0.008738713 0.009108956 0.0002884433
ST102TA 0.167160010 0.221663964 0.273441045 0.003510227 0.2088207321
ST102TS 0.008515869 0.167631015 0.074972768 0.022843632 1.9489628313
ST103CV 0.175682030 0.822144415 1.592278638 0.251205409 0.1727957251

Analytics of Small Data

243

It is also helpful to visualize the contributions of the variables to the PCs

by figures. For example, Figures 8.14 and 8.15 show the contributions of the

variables to the first and second PC, respectively.

fviz_contrib(pca.AD, choice = "var", axes = 1, top = 20)
fviz_contrib(pca.AD, choice = "var", axes = 2, top = 20)

Figure 8.14: Contributions of the variables for the first PC

Figure 8.15: Contributions of the variables for the second PC

Figure 8.16 is another way to visualize the contributions of the variables

to the PCs.

244

fviz_pca_var(pca.AD, col.var = "contrib", select.var = list(contr
ib = 20), gradient.cols = c("#00AFBB",
 "#E7B800", "#FC4E07"), repel = TRUE # Avoid text overlapping
)

Figure 8.16: Loadings of the top variables in the first and second PCs

Figure 8.17: Scatterplot of the subjects in the space defined by the first and

second PCs

Analytics of Small Data

245

With the identified PCs, we can visualize the distribution of the data

points in this new space spanned by the PCs. Sometimes, it may reveal some

inherent structure of the dataset. For example, for a classification problem, it

is hoped that the data points from different classes would cluster around

different centers in the space spanned by the PCs. In our case, as shown in

Figure 8.17, this cluster structure is not perfect but seems to be on the

borderline of significance, as it is not entirely like a pure random pattern.

Examine the projection of data points in the new space defined
by PCs
autoplot(prcomp(tempData), data = AD, colour = "DX_bl", label = T
RUE, label.size = 3)

The PCs can be taken as new variables. For example, we can build

regression models using the PCs to predict outcome variables. Here, we use

AGE as the outcome, and first fit a regression model with 10 PCs.

fit a regression model using the PCs
tempData <- data.frame(cbind(AD[, 5], pca.ADindcoord))
names(tempData) <- c("AGE", "PC1", "PC2", "PC3", "PC4", "PC5", "P
C6", "PC7",
 "PC8", "PC9", "PC10")
lm.AD <- lm(AGE ~ ., data = tempData)
summary(lm.AD)

It seems that the first PC is not significant, while the second, the third,

and the fifth PCs are significant. It is not unusual to see that the first PC is

insignificant, as the first PC sometimes may embody a variation source that

is not correlated with the outcome variable. It is always a challenge to

interpret the results of PCA, particularly, to interpret the physical

correspondence of the PCs. On the other hand, we can see that the R-

squared by this model is 0.3672, and the p-value is as small as 0.0008235,

indicating the overall model is significant. Further variable selection would

be conducted to prune the model and reduce its complexity.

Call:
lm(formula = AGE ~ ., data = tempData)

Residuals:

246

Min 1Q Median 3Q Max
-17.3377 -2.5627 0.0518 2.6820 11.1772

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 73.68767 0.59939 122.938 < 2e-16 ***
PC1 0.04011 0.08275 0.485 0.629580
PC2 -0.31556 0.09490 -3.325 0.001488 **
PC3 0.50022 0.13510 3.702 0.000456 ***
PC4 0.14812 0.17462 0.848 0.399578
PC5 0.47954 0.19404 2.471 0.016219 *
PC6 -0.29760 0.20134 -1.478 0.144444
PC7 0.10160 0.21388 0.475 0.636440
PC8 -0.25015 0.22527 -1.110 0.271100
PC9 -0.02837 0.22932 -0.124 0.901949
PC10 0.16326 0.23282 0.701 0.485794

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.121 on 62 degrees of freedom
Multiple R-squared: 0.3672, Adjusted R-squared: 0.2651
F-statistic: 3.598 on 10 and 62 DF, p-value: 0.0008235

III.4 Remark

While PCA has been widely used, it is often criticized as a black box model

or lack interpretability since it is always not easy to connect the identified

principal components with physical entities. But, probably, we may stop

worry about validity of the PCA method in many applications and focus on

the significance it can reveal. After all, when studying real-world systems that

we haven’t known what we don’t know yet, we have to make bold hypothesis

and make the leap over the gaps. This is probably one of the reasons why

PCA has been applied in many real world applications. The massive practices

of PCA in many areas have formed a convention, or a myth – some critical

statisticians may say – that formulistic rubrics have been invented to help

beginners to quickly jump in to the vehicle of PCA and start to convert their

very challenging data into PCA patterns, then further convert these patterns

into formulated sentences such as “the variables that have larger magnitudes

in the first 3 PCs correspond to the brain regions in hippocampus areas,

Analytics of Small Data

247

indicating that these brain regions manifest significant functional

connectivity to deliver the verbal function”, or “we have identified 5

significant PCs, and the genes that show dominant magnitudes in the linear

weights vector are all related to T-cell production and immune functions –

thereby each of the PC indicates a biological pathway that consists of these

constitutional genes working together to produce specific types of proteins”.

You may also hear from some financial analysts who presented such a result:

“through PCA on 100 stocks, we found that the first PC consists of 10 stocks

as their weights are significantly larger than the other stocks. This may

indicate that there is strong correlation between these 10 stocks and you may

consider this fact when you define your investment strategy”.

IV. Variable Selection by Random Forests

III.1 Rationale and Formulation

As we have seen that, both LASSO and PCA are linear models, which are

not suitable if there are nonlinear relationships in the dataset. For nonlinear

variable selection, the random forests have been commonly used. Recall that

the random forests consist of decision nodes that are defined by splits on

some variables. This can provide information about the variables’ importance

in the random forests. Also, random forests are powerful in capturing

nonlinear and predictive information from data, and therefore, provide data-

driven characterization of variable importance. Third, random forests require

little data preprocessing. They can handle different scales of the continuous

variables since the impurity gain is calculated based on the outcome variable,

and can work with both categorical and numerical variables. Given these

advantages, methods have been developed to conduct variable selection

using random forest models.

III.2 Theory and Method

Variable importance scores: The importance score of a variable can be

measured based on the Impurity gain. For classification problems, the Gini

index for the data points at a node is defined as

248

𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑐(1 − 𝑝𝑐)
𝐶
𝑐=1 ,

where 𝐶 is the number the classes in the data set, and 𝑝𝑐 is the proportion of

the data instances of class 𝑐.

Assuming that a variable is used for splitting the node into 𝑛 children

nodes. The Gini gain of the variable can be calculated as

∇ 𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 − ∑ 𝑤𝑖 ∗ 𝐺𝑖𝑛𝑖𝑖
𝑛
𝑖=1 ,

where 𝐺𝑖𝑛𝑖 is the Gini index at the node to be split; 𝑤𝑖 and 𝐺𝑖𝑛𝑖𝑖 are the

percentage of data instances of the entire dataset and the Gini index at the

𝑖𝑡ℎ node, respectively.

Then, the importance score of a variable can be calculated as
1

𝑛𝑡𝑟𝑒𝑒
∑ ∇ 𝐺𝑖𝑛𝑖𝑖
𝑗𝑚
𝑖=𝑗1

,

where 𝑗1 , …, 𝑗𝑚 are the nodes where the variable 𝑗 is used for splitting,

∇ 𝐺𝑖𝑛𝑖𝑖 is the Gini gain at node 𝑖, and 𝑛𝑡𝑟𝑒𝑒 is the number of trees in the

random forest model.

In what follows, we show how this can be done using a small data example.

Consider the following data example shown in Table 8.3. Note that 𝑋1

and 𝑋2 are identical, and thus one of them is redundant.

Table 8.3: A dataset example for RF

ID 𝑋1 𝑋2 𝑋3 𝑋4 Class

1 1 1 0 1 C0

2 0 0 0 1 C1

3 1 1 1 1 C1

4 0 0 1 1 C1

Assume that a random forest model is built on the data set with two trees,

show in Figure 8.18 and Figure 8.19, respectively. The Gini index at each

node is also shown in the Figures.

Analytics of Small Data

249

Figure 8.18: Tree 1 in a random forest model

Figure 8.19: Tree 2 in a random forest model

Now, we calculate the importance score for each variable.

At split 1, the Gini gain for 𝑋1 is calculated as

0.375 – 0.5*0 – 0.5*0.5 = 0.125.

At split 2, the Gini gain for 𝑋3 is 0.5.

At split 3, the Gini gain for 𝑋2 is 0.5 – 0.25*0 + 0.75*0.44 = 0.17.

At split 4, the Gini gain for 𝑋3 is 0.44.

250

Therefore, the importance score of 𝑋1 , 𝑋2 , 𝑋3 and 𝑋4 , are 0.125/2 =

0.0625, 0.17/2=0.085, (0.5+0.44)/2=0.47, and 0 (there is not split using 𝑋4),

respectively.

Note that the example above is about classification problems. For

regression problems, the mean squared error can be used as the impurity

measure:

𝑀𝑆𝐸 = ∑ (𝑦𝑖 − �̅�)
2

𝑖 ,

where 𝑦𝑖 is the value of the outcome variable of the 𝑖𝑡ℎ data instance at a

node, and �̿� is the average of the outcome variable of all the data instance at

the node.

Regularized random forests: We can see that, in this calculation, the

Gini gains are added equally across all the nodes, and a split that perfectly

separates 2 data points has the same Gini gain as a split that perfectly

separates 100 data points. Thus, the variable importance score built on this

Gini gain can be sensitive to noise. In addition, since the importance score

of a variable depends on only the splits where the variable is used, the

existence of correlation or redundancy between the variables can make this

concept of importance score misleading. In the illustrative example

abovementioned, since 𝑋1 and 𝑋2 are identical, their importance scores

should be the same. However, this is not the case, as in building the trees, the

random forest model randomly selects either of them to split the nodes. This

results in a dilution effect in the estimation of their importance scores. Thus,

the true importance score of either 𝑋1 or 𝑋2 should be the sum of the

obtained importance scores from an established random forest model.

 This is just a case of two redundant variables. As the number of highly

correlated variables increases, the importance scores for each are expected to

further decrease.

Thus, the importance scores of the variables provided by the random

forests do not consider variables redundancy. In the illustrative example,

both 𝑋1 and 𝑋2 are used for splitting nodes and generating impurity gain, but

only one of them is needed for the prediction task as they are essentially the

Analytics of Small Data

251

same. To overcome this limitation, we introduce the Regularized random

forests (RRF)1 that can generate a relevant and non-redundant variable subset.

Figure 8.20: Tree 1 in a random forest model

Figure 8.21: Tree 2 in a random forest model

The RRFs are built sequentially. A key difference between RRF and

ordinary random forests is that the RRF uses the regularized impurity gain

for evaluating the splitting criteria. The regularized impurity gain of variable

𝑋𝑖 at a node is calculated as

𝐺𝑎𝑖𝑛′(𝑋𝑖) = {
𝜆 ⋅ 𝐺𝑎𝑖𝑛(𝑋𝑖) 𝑋𝑖 ∉ 𝐹
𝐺𝑎𝑖𝑛(𝑋𝑖) 𝑋𝑖 ∈ 𝐹

 },

1 Deng, H. and Runger, G. Gene selection with guided regularized random forest. Pattern

recognition, 2013.

252

where 𝐺𝑎𝑖𝑛(𝑋𝑖) is an ordinary impurity gain, e.g., Gini index gain and

reduction of mean square error; 𝐹 is a feature subset including features used

to split the previous nodes and is an empty set at the first node of the first

tree; 𝜆 ∈ (0,1] is referred as the coefficient and is used to penalize the gain

if 𝑋𝑖 is used in previous split.

In RRF, if a variable 𝑋𝑖 that is not present in 𝐹 produces more

information gain than the variables in 𝐹, it will be used for splitting the node

and further added into 𝐹. Also, not like in random forests where the number

of features 𝑀 is randomly selected and tested at each node, in RRF, all

features from 𝐹 and a subset of features randomly selected from �̅� (features

that do not belong to 𝐹) are tested. The size of the subset can be set to the

minimum of 𝑀 and size of �̅�.

We illustrate how the RRF can be built with the data example shown in

Table 8.3. Here, we set 𝜆 = 0.8, and 𝑀 = 1.

First, look at the tree shown in Figure 8.20. At split 1, 𝐹 is an empty set.

Assuming that, still, 𝑋1 is used for testing the split. The regularized Gini gain

for 𝑋1 = 0 is calculated as

0.8 * (0.375 – 0.5*0 – 0.5*0.5) = 0.8 * 0.125 = 0.1.

After split 1, 𝐹 = {𝑋1}.

At split 2, suppose 𝑋3 is selected for testing the split as it is not in 𝐹 yet.

The regularized Gini gain for 𝑋3 = 0 is 0.8 * 0.5 = 0.4. As all the other

variables in 𝐹 should be tested, we can also get that the regularized Gini gain

for 𝑋1 is 0. Therefore, 𝑋3 is still the best variable for splitting the node.

After split 3, 𝐹 = {𝑋1, 𝑋3}.

It can be seen that the first tree grown by RRF is the same as the one

from the earlier section. Now consider the second example as shown in

Figure 8.21.

At split 3, suppose 𝑋2 is still used for testing the node. As 𝑋2 is not in 𝐹

yet, the regularized Gini gain of 𝑋2 = 0 is 0.8 * (0.5 – 0.25*0 + 0.75*0.44) =

0.8 * 0.17 = 0.136. The regularized Gini gain for 𝑋1 = 0 is 0.5 – 0.25*0 +

Analytics of Small Data

253

0.75*0.44 = 0.17 as 𝑋1 is in 𝐹 and is not penalized. The regularized Gini gain

for 𝑋3 = 0 is 0.5.

Therefore, 𝑋3 is used for splitting the node. Both children nodes have

only one class and so are made as leaf nodes.

It can be seen from the second tree building process, the redundant

feature, 𝑋2, is penalized and has less gain than its identical variable 𝑋1. Also,

𝑋3 is now used for splitting the node as it has the strongest impurity gain.

Thus, the variable subset selected from the two trees are 𝐹 = {𝑋1, 𝑋3}.

While the RRF is a remedy to overcome redundancy of variables, the

guided regularized random forests (GRRF) can further enhance RRF when

the sample size is small. This is because that, since a tree recursively splits the

training data points, the number of data points can be small when the tree

reaching a certain depth. The evaluation criterion may not be accurate when

the number of data points is small and could add noise to variable selection.

The GRRF can be used to reduce the chance an irrelevant or redundant

variable being selected when the number of instances is small.

In GRRF, instead having one 𝜆 for all variables, each variable 𝑋𝑖 can have

its own 𝜆𝑖:

𝐺𝑎𝑖𝑛′(𝑋𝑖) = {
𝜆𝑖 ⋅ 𝐺𝑎𝑖𝑛(𝑋𝑖) 𝑋𝑖 ∉ 𝐹
𝐺𝑎𝑖𝑛(𝑋𝑖) 𝑋𝑖 ∈ 𝐹

 },

where 𝜆𝑖 is

𝜆𝑖 = (1 − 𝛾)𝜆0 + 𝛾 ∗ 𝑤𝑖,

where 𝜆0 controls the base regularization, 𝑤𝑖 ∈ [0,1] is a prior of

importance of each variable 𝜐𝑖, and 𝛾 ∈ [0,1] controls the weight from the

prior. Note RRF is a special case of GRRF when 𝛾 = 0 . 𝑤𝑖 can be

determined by prior knowledge about the variables, or can be generated from

the normalized importance scores (between 0 and 1) from random forests.

The importance scores aggregate the impurities gains from all trees, and

therefore, are expected to be less noisy than the impurity gain calculated only

from a single node.

254

Suppose at the first split of the first tree shown in Figure 8.18, two

variables 𝑋1 and 𝑋2 are selected for testing, where 𝑤1 = 0.6, 𝑤2 = 1, 𝜆0 =

0.9, and 𝛾 = 0.5. Then, the impurity gain in GRRF for 𝑋1 is calculated as

(0.5*0.9 + 0.5*0.6)*0.125.

And the impurity gain for 𝑋2 is

(0.5*0.9 + 0.5*1)*0.125.

Therefore, even the original impurity gain for the two variables is the

same, with a prior weight, 𝑋2 is preferred to split the node.

III.3 R Lab

We use the extended AD dataset. Further, we add redundant variables,

i.e., the number of variables in this manipulated dataset are 4 times of the

number of original variables. We then use all the features to predict the age

as a classification problem, i.e., we discretize the variable “AGE” to create a

binary variable by its mean value.

First, we apply random forests to this data set. The importance scores of

the variables are plotted in Figure 8.22. The variable names are omitted due

to limited space.

require(inTrees)
require(randomForest)
require(RRF)
set.seed(1)
theme_set(theme_gray(base_size = 18))

path <- "../../data/AD_hd.csv"
data <- read.csv(path, header = TRUE)
data$AGE <- as.factor(dicretizeVector(data$AGE, K = 2))
target <- data$AGE
rm_indx <- which(colnames(data) %in% c("AGE", "ID", "TOTAL13", "M
MSCORE"))
X <- data[, -rm_indx]
X1 <- cbind(X, X, X)
colnames(X1) <- paste0("Y", 1:ncol(X1))
for (i in 1:ncol(X1)) {
 perc <- 0.1
 index <- sample(nrow(X1), floor(nrow(X1) * perc))
 X1[, i][sort(index)] <- (X1[, i])[index]
}

Analytics of Small Data

255

X <- cbind(X, X1)
rf <- randomForest(X, target)
imp <- as.data.frame(rf$importance)
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
"
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE]
imp$variable <- rownames(imp)
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable))
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",
 aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank())

Figure 8.22: The important score of the variables by RF

From Figure 8.22 we can see a ranking of all variables in terms of their

predictive powers. The top variables are ST62TA ST59TS, ST56TA, ST58CV, and

ST26TS. However, as we have demonstrated on the exemplary dataset shown

in Table 8.3, the important scores of the variables are actually diluted by the

redundancy of the variables. Thus, the observation that a large number of

variables have non-zero importance scores in Figure 8.22 just amplifies the

suspicion that there may be many redundant variables.

Now, let’s apply the RRF to the data. The importance scores from the

RRF are plotted in Figure 8.23.

256

rrf <- RRF(X, target)
imp <- as.data.frame(rrf$importance)
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
"
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE]
imp$variable <- rownames(imp)
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable))
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",
 aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank())

Figure 8.23: The important score of the variables by RRF

Clearly, as shown in Figure 8.23, a much smaller number of variables have

non-zero importance scores, compared to ordinary random forests. This

demonstrates the superior capacity of RRF to deal with redundant variables

than regular RF models.

Now, let’s apply the GRRF to this dataset. The importance scores from

the GRRF are shown in Figure 8.24. Similarly, the number of variables with

non-zero importance scores is much smaller than ordinary random forests.

rf <- randomForest(X, target)
impRF <- rf$importance
impRF <- impRF[, "MeanDecreaseGini"]
imp <- impRF/(max(impRF)) #normalize the importance scores into
[0,1]
gamma <- 0.1

Analytics of Small Data

257

coefReg <- (1 - gamma) * 1 + gamma * imp # each variable has a c
oefficient, which depends on the importance score from the ordina
ry RF and the parameter: gamma
grrf <- RRF(X, target, flagReg = 1, coefReg = coefReg)

imp <- as.data.frame(grrf$importance)
colnames(imp)[colnames(imp) == "MeanDecreaseGini"] <- "importance
"
imp <- imp[order(imp$importance, decreasing = TRUE), , drop = FAL
SE]
imp$variable <- rownames(imp)
imp$variable <- factor(imp$variable, levels = as.character(imp$va
riable))
ggplot(data = imp, aes(x = variable, y = importance)) + geom_bar
(stat = "identity",
 aes(factor(variable)), fill = "red") + theme(axis.text.x = el
ement_blank())

Figure 8.24: The important score of the variables by RRF

The previous figures illustrate that both RRF and GRRF use a much

smaller number of variables to predict, compared to ordinary random forests.

Now we evaluate the quality of the variable subset by the classification error.

Here is the procedure of evaluating the variable selection method. The

dataset is split into training and testing sets with a 2:1 ratio. Different variable

selection methods (e.g., by RF, RRF, and GRRF) are applied to the training

set, and then, variable subsets are selected. Then, ordinary random forests are

trained on the reduced training set, and applied to the testing set such that

258

we can obtain the classification error. Each of the following experiments is

run 50 times to get a robust estimate of the error rate. Note that, here, we

first create the indices for the testing set (50 replicates), so that the later

experiments can all consistently use the same indices.

The first variable selection method is to select the top 𝐾 variables that

have the top 𝐾 importance scores from random forests. We study this

method by changing 𝐾 from 1 to 200. Results are shown in Figure 8.25.

set.seed(1)
testing.indices <- NULL
for (i in 1:50) {
 testing.indices <- rbind(testing.indices, sample(nrow(data),
floor(1 * nrow(data)/3)))
}

err.mat.rf <- NULL
for (K in c(1, (1:10) * 10, 150, 200)) {
 pred <- NULL
 for (i in 1:nrow(testing.indices)) {

 testing.ix <- testing.indices[i,]
 X.training <- X[-testing.ix,]
 target.training <- target[-testing.ix]
 X.testing <- X[testing.ix, , drop = FALSE]
 target.testing <- target[testing.ix]

 rf <- randomForest(X.training, target.training)
 impRF <- rf$importance
 impRF <- impRF[, "MeanDecreaseGini"]
 ix <- order(impRF, decreasing = TRUE)

 X.training.new <- X.training[, ix[1:K], drop = FALSE]
 rf <- randomForest(X.training.new, target.training)

 target.pred <- predict(rf, X.testing)

 error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing)
 err.mat.rf <- rbind(err.mat.rf, c(K, error))
 }
}
err.mat.rf <- as.data.frame(err.mat.rf)
colnames(err.mat.rf) <- c("num_features", "error")

Analytics of Small Data

259

ggplot() + geom_boxplot(data = err.mat.rf %>% mutate(num_features
 = as.factor(num_features)),
 aes(y = error, x = num_features)) + geom_point(size = 3)

Figure 8.25: The error rates of the RF models with different number of

features

From Figure 8.25, it can be seen that the error rates decrease as the

number of variables increases. This makes sense as additional information is

provided to the model to predict the outcome variable as more variables are

added.

Next, we use RRF to conduct variable selection. This can be done by

changing the coefficient parameter (coefReg) in RRF. The number of

selected variables should increase as the coefficient increases, and the error

rates should decrease accordingly. Results are shown in Figure 8.26 and

Figure 8.27.

set.seed(1)
err.mat.rrf <- NULL
for (coefI in c(0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 1)) {
 pred <- NULL
 for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 X.training <- X[-testing.ix,]
 target.training <- target[-testing.ix]
 X.testing <- X[testing.ix, , drop = FALSE]
 target.testing <- target[testing.ix]

260

 rrf <- RRF(X.training, target.training, coefReg = coefI)

 X.training.new <- X.training[, rrf$feaSet, drop = FALSE]
 rf <- randomForest(X.training.new, target.training)

 target.pred <- predict(rf, X.testing)
 # pred <- c(pred, as.character(target.pred))
 error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing)
 err.mat.rrf <- rbind(err.mat.rrf, c(coefI, length(rrf$fea
Set), error))
 }
 # error <- length(which(pred != target))/length(pred) err.ma
t.rrf <-
 # rbind(err.mat.rrf, c(coefI, mean(num.fea.v), error))
}
err.mat.rrf <- as.data.frame(err.mat.rrf)
colnames(err.mat.rrf) <- c("coef", "num_features", "error")
err.mat.rrf <- err.mat.rrf %>% mutate(coef=as.factor(coef))
ggplot() + geom_boxplot(data = err.mat.rrf %>% mutate(coef = as.f
actor(coef)),
 aes(y = error, x = coef)) + geom_point(size = 3)

It is known that the maximum number of features are selected when the

coefficient becomes 1. As shown in Figure 8.26, when the coefficient is

around 0.95, the smallest error rates could be obtained. Also, from Figure

8.27, we can see that, indeed the number of selected variables increases when

the coefficient increases. Thus, RRF provides a continuum of variable

selection controlled by the parameter coefReg, providing convenience in

model tuning and cross-validation.

ggplot() + geom_boxplot(data = err.mat.rrf %>% mutate(coef = as.f
actor(coef)),
 aes(y = num_features, x = coef)) + geom_point(size = 3)

Analytics of Small Data

261

Figure 8.26: The error rates of the RF models with different values of coef

Figure 8.27: Number of features versus different values of coef

Furthermore, we conduct the variable selection using GRRF. We use

different 𝛾 in GRRF and check the number of features and error rates. The

weights come from the importance scores from random forests. As shown

in Figure 8.28 and Figure 8.29, we can observe that the number of features

decreases as 𝛾 increases, and the error rates increase accordingly.

set.seed(1)
err.mat.grrf <- NULL
for (gammaI in c(0.4, 0.3, 0.2, 0.1, 0.05, 0)) {

262

 pred <- NULL
 num.fea.v <- NULL

 for (i in 1:nrow(testing.indices)) {
 testing.ix <- testing.indices[i,]
 X.training <- X[-testing.ix,]
 target.training <- target[-testing.ix]
 X.testing <- X[testing.ix, , drop = FALSE]
 target.testing <- target[testing.ix]

 rf <- randomForest(X.training, target.training)
 impRF <- rf$importance
 impRF <- impRF[, "MeanDecreaseGini"]
 imp <- impRF/(max(impRF))
 coefReg <- (1 - gammaI) * 1 + gammaI * imp

 grrf <- RRF(X.training, target.training, flagReg = 1, coe
fReg = coefReg)

 # num.fea.v <- c(num.fea.v, length(grrf$feaSet))
 X.training.new <- X.training[, grrf$feaSet, drop = FALSE]

 rf <- randomForest(X.training.new, target.training)

 target.pred <- predict(rf, X.testing)
 # pred <- c(pred, as.character(target.pred))
 error <- length(which(as.character(target.pred) != targe
t.testing))/length(target.testing)
 err.mat.grrf <- rbind(err.mat.grrf, c(gammaI, length(grrf
$feaSet), error))
 }
}

err.mat.grrf <- as.data.frame(err.mat.grrf)
colnames(err.mat.grrf) <- c("gamma", "num_features", "error")
err.mat.grrf <- err.mat.grrf %>% mutate(gamma=as.factor(gamma))
ggplot() + geom_boxplot(data = err.mat.grrf %>% mutate(gamma = a
s.factor(gamma)),
 aes(y = error, x = gamma)) + geom_point(size = 3)

Analytics of Small Data

263

Figure 8.28: The error rates of the RF models with different values of

gamma in RRF

ggplot() + geom_boxplot(data = err.mat.grrf %>% mutate(gamma = a
s.factor(gamma)),
 aes(y = num_features, x = gamma)) + geom_point(size = 3)

Figure 8.29: Number of features versus different values of gamma

Now, we compile the results from all the methods, and plot the average

error rates at each number of features in Figure 8.30. For RRF and GRRF,

the average number of features and average error rates of each parameter

264

setting are used. It can be seen that between 40 and 80 features, the RRF and

GRRF methods have lower error rates than the RF model that uses the top

𝐾 features according to the importance scores generated by the RF model.

As 𝐾 increases, the error rate of using the top 𝐾 variables according to the

RF importance scores continues to decrease, lower than using the variables

selected from RRF or GRRF. This means that RRF and GRRF can miss

some informative variables. However, since this dataset is small, and the use

of cross-validation makes it even smaller, the difference may not be as

significant. To verify this hypothesis, we also plot the average errors with +/-

1 standard deviation in Figure 8.31. It can be seen that all the methods have

similar error rate ranges when a certain number of variables is selected.

However, an advantage for RRF and GRRF is that they can efficiently

determine the number of variables needed by changing the coefficient or 𝛾.

err.mat.rf <- as.data.frame(err.mat.rf)
err.mat.rf$method <- "RF"
err.mat.rrf <- as.data.frame(err.mat.rrf)
err.mat.rrf$method <- "RRF"
err.mat.grrf <- as.data.frame(err.mat.grrf)
err.mat.grrf$method <- "GRRF"
err.mat.rrf.summary <- err.mat.rrf %>% group_by(coef, method) %>%
 summarize(num_features = mean(num_features),
 sd = sd(error), error = mean(error), upper = error + sd, lowe
r = error -
 sd) %>% ungroup()
err.mat.grrf.summary <- err.mat.grrf %>% group_by(gamma, method)
 %>% summarize(num_features = mean(num_features),
 sd = sd(error), error = mean(error), upper = error + sd, lowe
r = error -
 sd) %>% ungroup()
err.mat.rf.summary <- err.mat.rf %>% group_by(num_features, metho
d) %>% summarize(sd = sd(error),
 error = mean(error), upper = error + sd, lower = error - sd)
 %>% ungroup()
err.mat <- rbind(err.mat.rf.summary[, c("num_features", "error",
"method", "lower",
 "upper")], err.mat.rrf.summary[, c("num_features", "error", "
method", "lower",
 "upper")], err.mat.grrf.summary[, c("num_features", "error",
"method", "lower",
 "upper")])

Analytics of Small Data

265

ggplot(err.mat, aes(x = num_features, y = error, group = method,
colour = method)) +
 geom_line(linetype = "dashed") + geom_point()

Figure 8.30: The error rates of the RF models with different number of

features by RF, RRF, and GRRF

Figure 8.31: The error rates (and their upper and lower bounds) of the RF

models with different number of features by RF, RRF, and GRRF

ggplot(err.mat, aes(x = num_features, y = error, group = method,
colour = method)) +
 geom_line(linetype = "dashed") + geom_point() + geom_ribbon(d
ata = err.mat,
 aes(ymin = lower, ymax = upper), alpha = 0.05)

266

In addition, a more extensive study on more datasets has found that the

RF model with the variables selected from RRF or GRRF can significantly

outperform the RF model that uses all the features. This provides evidence

that the RRF and GRRF indeed can provide better variable selection results

in this data, which is consistent with theoretical arguments illustrated using

the exemplary dataset shown in Table 8.3, and the simulation results we have

shown in Figures 8.22 – 8.24.

IV. Exercises

Data analysis

1. Find 5 classification datasets from the UCI data repository or R

datasets. Use LASSO to select variables. Then, based on the reduced

dataset, conduct a detailed analysis using the logistic regression

model, SVM, decision tree, random forest, and AdaBoost. Conduct

model selection and validation. Use cross-validation to select the

best models.

2. Repeat 1, but use random forest to select variables. Compare the

final models with the ones based on LASSO.

3. Repeat 1, but use PCA to identify the top PCs to replace the original

variables. Compare the final models with the ones based on LASSO.

4. Find 5 regression datasets from the UCI data repository or R

datasets. Repeat 1 and 3.

Programming

5. Write your own R script to implement the shooting model. Compare

your results with glm().

6. Write your own R script to implement the PCA model. Compare

your results with pca().

CHAPTER 9: CRAFTSMANSHIP
MODEL EXTENSION/STACKING

I. Overview

Chapter 9 is about “craftsmanship”. It recognizes the complexity of real-

world problems, and highlight how we can modify or combine existing

methods in integrative ways to solve a problem. Three examples are given,

including the Kernel regression model that generalized the idea of linear

regression, the conditional variance regression model that interestingly layers

one regression model into another, and the tree-based quality monitoring

method that converts traditional quality monitoring into classification

framework.

II. Kernel Regression Model

II.1 Rationale and Formulation

Linear regression model looks intuitive, but it is built on very strong

assumptions. One strong assumption is that, the linear regression model

treats any data point in a global fashion. In other words, while a data point is

268

located in a particular geographical area, it has impact on the model’s

prediction on any other location in the space. This could be irrational, as in

some applications the data point collected in a local area may only tell

information about that area, not easily generalizable to the whole space. This

risk is shown in Figure 9.1.

Figure 9.1: Risk of linear regression model as a global model. (left) A

single outlier could impact the regression model as a whole; (Right) Many

data problems call for localized regression models

The R code for conducting the experiment shown in the left figure in

Figure 9.1 is shown in below.

Write a nice simulator to generate dataset with one predictor a
nd one outcome
from a polynomial regression model
require(splines)

seed <- rnorm(1)
set.seed(seed)
gen_data <- function(n, coef, v_noise) {
 eps <- rnorm(n, 0, v_noise)
 x <- sort(runif(n, 0, 100))
 X <- cbind(1,ns(x, df = (length(coef) - 1)))
 y <- as.numeric(X %*% coef + eps)
 return(data.frame(x = x, y = y))
}

Analytics of Small Data

269

n_train <- 30
coef <- c(1,0.5)
v_noise <- 3
tempData <- gen_data(n_train, coef, v_noise)
tempData[31,] = c(200,200)
Fit the data using linear regression model
x <- tempData[, "x"]
y <- tempData[, "y"]
fit <- lm(y~x,data=tempData)
Plot the data
x <- tempData$x
X <- cbind(1, x)
y <- tempData$y
plot(y ~ x, col = "gray", lwd = 2)
lines(x, X %*% coef, lwd = 3, col = "black")
lines(x, fitted(fit), lwd = 3, col = "darkorange")
legend(x = "topleft", legend = c("True function", "Fitted linear
model"), lwd = rep(4, 4), col = c("black", "darkorange"), text.wi
dth = 100, cex = 1.5)

So how to fix this problem, while on the other hand we don’t want to

derivate from the linear regression framework too far?

One approach we could utilize is to look at the linear regression model in

a new perspective. Statisticians and data scientists who innovate on modeling

use this approach of look-for-a-new-perspective all the time1.

Let’s look at the simple linear regression problem 𝑦 = 𝛽0 + 𝛽1𝑥. Let’s

further simplify it by assuming that we know the mean of 𝑦 is zero, so is the

mean of 𝑥. This will lead to the model as 𝑦 = 𝛽1𝑥 and the estimator of 𝛽1

as

𝛽1 =
(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1)

∑ 𝑥𝑖
2𝑛

𝑖=1

.

Thus, when we try to make prediction on a new data point with a given

𝑥∗, the prediction 𝑦∗ will be

𝑦∗ = 𝑥∗
(∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1)

∑ 𝑥𝑖
2𝑛

𝑖=1

.

1 Some examples for interested readers: Neal, R. Bayesian learning for neural networks,

Springer Verlag 1996. Lee, K. and Kim, J. On the equivalence of linear discriminant analysis
and least squares, AAAI 2005. Ye, J. Least squares linear discriminant analysis, ICML 2007.
Li, F., Yang, Y. and Xing, E. From LASSO regression to feature vector machine, NIPS 2005.

270

This could be further reformed as:

𝑦∗ = ∑ 𝑦𝑖
𝑥𝑖

∑ 𝑥𝑖
2𝑛

𝑖=1

𝑥∗𝑛
𝑖=1 ,

which is equivalent with

𝑦∗ = ∑ 𝑦𝑖
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2

𝑛
𝑖=1 .

Now if we look closely at this formula, we can draw interesting

observations how linear regression model works in prediction on a new

location using its knowledge on other locations (e.g., the historical data points

(𝑥𝑖, 𝑦𝑖) for 𝑖 = 1,2,… , 𝑛). It first evaluates the similarity between the new

location with each of the knowing locations, as reflected in
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2 , where 𝑥𝑖𝑥

∗

calculates the similarity and 𝑛𝑆𝑥
2 is a normalization factor. Then, the

prediction 𝑦∗ is a weighted sum of 𝑦𝑖 for 𝑖 = 1,2,… , 𝑛 while the weight of

𝑦𝑖 is proportional to the similarity between 𝑥𝑖 and 𝑥∗. From this perspective,

we see linear regression model as a very empirical prediction model that bears

the same idea with those lazy learning methods such as k-nearest-neighbor

regression model or local regression models. The difference here, in the linear

regression model, is that a special similarity measure (i.e.,
𝑥𝑖𝑥

∗

𝑛𝑆𝑥
2) is used, that

means the weight of a data point depends on how far it is from the center of

the data, not how far it is from the point at which we are trying to predict.

Thus, for this similarity measure to work we need to hope that the underlying

model is globally linear.

II.2 Theory and Method

We then pursue a generalized family of model, defined as:

𝑦∗ = ∑ 𝑦𝑛𝑤(𝑥𝑛, 𝑥
∗)𝑁

𝑛=1 .

Here, 𝑤(𝑥𝑛, 𝑥
∗) is the weight that characterizes the similarity between

the point that will be predicted on (i.e., 𝑥∗) and the existing data points, 𝑥𝑛

for 𝑛 = 1,2, … ,𝑁 . Roughly speaking, there are two types of methods to

define this similarity metric.

One is the K-nearest neighbor (KNN) smoother:

Analytics of Small Data

271

𝑤(𝑥𝑛, 𝑥
∗) = {

1

𝑘
, 𝑖𝑓𝑥𝑛 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑥

∗

0, 𝑖𝑓𝑥𝑛 𝑖𝑠 𝑁𝑂𝑇 𝑖𝑛 𝑡ℎ𝑒 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑥
∗
.

Here, to define the neighbors of a data point, a distance function is needed,

e.g., a popular one is the Euclidean distance function.

Note that, a distinct feature of the KNN smoother is the discrete manner

to define similarity between data points. Which is, a data point is either a

neighbor of another data point, or not. Not like this, the kernel smoother is

another approach that has the continuity in similarity between data points. A

kernel smoother defines 𝑤(𝑥𝑛, 𝑥
∗) in the following manner:

𝑤(𝑥𝑛, 𝑥
∗) =

𝐾(𝑥𝑛,𝑥
∗)

∑ 𝐾(𝑥𝑛,𝑥
∗)𝑁

𝑛=1
.

There have been many kernel functions developed, for example, as shown

in Table 9.1:

Table 9.1: Some kernel functions used in machine learning

Kernel function Mathematical form Parameters

Linear 𝐾(𝒙𝑖, 𝒙𝑗) = 𝒙𝑖
𝑇𝒙𝑗 𝑛𝑢𝑙𝑙

Polynomial 𝐾(𝒙𝑖, 𝒙𝑗) = (𝒙𝑖
𝑇𝒙𝑗 + 1)

𝑞
 𝑞

Gaussian radial

basis
𝐾(𝒙𝑖, 𝒙𝑗) = 𝑒

−𝛾‖𝒙𝑖−𝒙𝑗‖
2

 𝛾 ≥ 0

Laplace radial basis 𝐾(𝒙𝑖 , 𝒙𝑗) = 𝑒
−𝛾‖𝒙𝑖−𝒙𝑗‖ 𝛾 ≥ 0

Hyperbolic tangent 𝐾(𝒙𝑖 , 𝒙𝑗) = tanh(𝒙𝑖
𝑇𝒙𝑗 + 𝑏) 𝑏

Sigmoid 𝐾(𝒙𝑖, 𝒙𝑗) = tanh(𝑎𝒙𝑖
𝑇𝒙𝑗 + 𝑏) 𝑎, 𝑏

Bessel function

𝐾(𝒙𝑖 , 𝒙𝑗)

=
𝑏𝑒𝑠𝑠𝑒𝑙𝑣+1

𝑛 (𝜎‖𝒙𝑖 − 𝒙𝑗‖)

(‖𝒙𝑖 − 𝒙𝑗‖)
−𝑛(𝑣+1)

𝜎, 𝑛, 𝑣

ANOVA radial

basis
𝐾(𝒙𝑖, 𝒙𝑗) = (∑ 𝑒

−𝜎(𝑥𝑖
𝑘−𝑥𝑗

𝑘)
𝑛

𝑘=1
)
𝑑

 𝜎, 𝑑

272

II.3 R Lab

Using the established framework in Chapter 5 to generate nonlinear

dataset, here, we use the following R code to implement the KNN regression

model.

Simulate one batch of data
n_train <- 100
coef <- c(-0.68,0.82,-0.417,0.32,-0.68)
v_noise <- 0.2
n_df <- 20
df <- 1:n_df
tempData <- gen_data(n_train, coef, v_noise)
Fit different KNN models
x <- tempData$x
X <- cbind(1, ns(x, df = (length(coef) - 1)))
y <- tempData$y
install.packages("FNN")
require(FNN)

Loading required package: FNN

xy.knn3<- knn.reg(train = x, y = y, k=3)
xy.knn10<- knn.reg(train = x, y = y, k=10)
xy.knn50<- knn.reg(train = x, y = y, k=50)

Then, we draw the true model (as a black curve) and the sampled data

points using the following R code. Result is shown in Figure 9.2.

Plot the data
plot(y ~ x, col = "gray", lwd = 2)

And we further layer the fitted KNN regression models with different

choices on the parameter 𝑘 onto the figure.

lines(x, X %*% coef, lwd = 3, col = "black")
lines(x, xy.knn3$pred, lwd = 3, col = "darkorange")
lines(x, xy.knn10$pred, lwd = 3, col = "dodgerblue4")
lines(x, xy.knn50$pred, lwd = 3, col = "forestgreen")
legend(x = "topleft", legend = c("True function", "KNN (k = 3)",
"KNN (k = 10)", "KNN (k = 50)"),
 lwd = rep(3, 4), col = c("black", "darkorange", "dodgerblu
e4", "forestgreen"),
 text.width = 32, cex = 0.85)

Analytics of Small Data

273

Figure 9.2: KNN regression models with different choices on the number

of nearest neighbors

It can be seen that, with smaller number of nearest neighbors, the fitted

curve by the KNN regression model is less smooth. That means, a KNN

regression model with a smaller parameter 𝑘 tends to predict on a data point

by relying on only a few local data points, ignoring information provided by

other data points that are far away. This is very different from the spirit of

linear regression model, in which no matter how far away a data point is, it

can change predictions on any other data point globally as it changes the

regression line as a whole.

A related observation is, in terms of model complexity, the smaller the

parameter 𝑘, the more complex the regression model. This is often taken as

a counterintuitive conclusion.

Similarly, we can repeat the experiments introduced above for

implementing the kernel smoother regression model. Here, we use the

Gaussian radial basis kernel function in the kernel smoother regression model.

Result is shown in Figure 9.3.

Repeat the above experiments with kernel smoother
Plot the data
plot(y ~ x, col = "gray", lwd = 2)
lines(x, X %*% coef, lwd = 3, col = "black")
lines(ksmooth(x,y, "normal", bandwidth=2),lwd = 3, col = "darkora

274

nge")
lines(ksmooth(x,y, "normal", bandwidth=5),lwd = 3, col = "dodgerb
lue4")
lines(ksmooth(x,y, "normal", bandwidth=15),lwd = 3, col = "forest
green")
legend(x = "topright", legend = c("True function", "Kernel Reg (b
w = 2)", "Kernel Reg (bw = 5)", "Kernel Reg (bw = 15)"),
 lwd = rep(3, 4), col = c("black", "darkorange", "dodgerblu
e4", "forestgreen"),
 text.width = 32, cex = 0.85)

Figure 9.3: Kernel regression models with different choices on the

bandwidth parameter of the Gaussian radial basis kernel function

As shown in Figure 9.3, the bandwidth parameter in the kernel smoother

regression plays a similar role as the parameter 𝑘 in KNN regression. The

larger the bandwidth, the smoother of the regression curve. On the other

hand, it can be seen that the curve of kernel smoother is smoother than the

KNN curves. This observation corresponds to the note we mentioned in the

beginning of this subsection that KNN is discretely parameterized while

kernel smoother introduces smoothness and continuity into the definition of

the neighbors of a data point (thus no hard thresholding is needed to classify

whether a data point is a neighbor of another data point).

Analytics of Small Data

275

III. Conditional Variance Regression Model

II.1 Rationale and Formulation

Another common complication when applying linear regression model in

real-world applications is that the variance of the response variable may also

change. This phenomenon is called as heteroscedasticity in regression

analysis. This complication can be taken care of by a conditional variance

regression model that allows the variance of the response variable to be a

(usually implicit) function of the input variables. This leads to the following

model:

𝑦 = 𝜷𝑇𝒙 + 𝜖𝒙,

and 𝜖𝒙 is the error term that is a normal distribution with varying variance:

𝜖𝒙~𝑁(0, 𝜎𝒙
2).

The remaining issue is how to estimate the regression parameters.

II.2 Theory and Method

Known 𝝈𝒙
𝟐: If we have known the 𝜎𝒙

2 , this will lead to the following

scheme for parameter estimation of the unknown regression parameters. The

likelihood function is:

−
𝑛

2
ln 2𝜋 −

1

2
∑ log𝜎𝒙𝑛

2𝑁
𝑛=1 −

1

2
∑

(𝑦𝑛−𝜷
𝑇𝒙𝑛)

2

𝜎𝒙𝑛
2

𝑁
𝑛=1 .

As we have known 𝜎𝒙
2, the parameters to be estimated only involve the last

part of the likelihood function. Thus, we estimate the parameters that

minimize

1

2
∑

(𝑦𝑛−𝜷
𝑇𝒙𝑛)

2

𝜎𝒙𝑛
2

𝑁
𝑛=1 .

This could be written in the matrix form as

min
𝜷
(𝒀 − 𝐗𝜷)𝑇𝐖(𝒀 − 𝐗𝜷),

where 𝐖 is a diagonal matrix with its diagonal elements as 𝐖𝑛𝑛 =
1

𝜎𝒙𝑛
2 .

To solve this optimization problem, we can take the gradient of the

objective function and set it to be zero:

276

𝜕(𝒀−𝐗𝜷)𝑇𝐖(𝒀−𝐗𝜷)

𝜕𝜷
= 0,

which gives rise to the equation:

𝐗𝑇𝐖(𝒀 − 𝐗𝜷) = 0.

This leads to the weighted least square estimator of 𝜷 as

�̂� = (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒀.

Unknown 𝝈𝒙
𝟐: A more complicated situation, also more realistic situation,

is that we don’t know 𝜎𝒙
2. This means that we need to estimate 𝜎𝒙

2. To do so,

it is important to recognize that this problem bears a regression core in its

formulation. It is to use the input variables 𝒙 to predict a new outcome

variable, 𝜎𝒙
2. The only complication here is that, we don’t have the “natural

measurements” of the new outcome variable that is needed to apply the

regression method. Since, here, the outcome variable 𝜎𝒙
2 is not directly

measuable. This is a latent variable in statistics.

To overcome this problem, we can estimate the measurements of the

latent variable, denoted as �̂�𝒙𝑛
2 for 𝑛 = 1,2, … ,𝑁. This philosophy of taking

some variables as latent variables and further using statistical

estimation/inference to fill in the unseen measurements is popular and fertile

in statistics that underlies many models such as the latent factor models,

structural equation models, missing values imputation, EM algorithm,

Gaussian mixture model, graphical models with latent variables, etc.

Thus, we propose the following steps:

1. Initialize �̂�𝒙𝑛
2 for 𝑛 = 1,2, … ,𝑁 , by any reasonable approach

including the random generation of values.

2. Build a regression model for the mean of the response variable using

the weighted LS estimator. Estimate �̂� = (𝐗𝑇𝐖𝐗)−1𝐗𝑇𝐖𝒀 and get

�̂�𝑛 = �̂�
𝑇𝒙𝑛.

3. Derive the residuals 𝜀�̂� = 𝑦𝑛 − �̂�𝑛.

Analytics of Small Data

277

4. Build a regression model, e.g., using the kernel regression which is a

nonparametric method, to fit 𝜀�̂�
2 using 𝒙𝑛 for 𝑛 = 1,2,… ,𝑁.

5. Predict �̂�𝒙𝑛
2 for 𝑛 = 1,2,… ,𝑁 using the fitted regression model in

Step 3.

6. Repeat Step 2 – Step 5 until convergence or satisfaction of a stopping

criteria (could be a fixed number of iterations or small change of

parameters).

We can see that the proposed conditional variance regression model is a

composition of two regular linear regression models to work out the

heteroscedasticity. This is a typical model stacking strategy to create new

models based on existing models.

II.3 R Lab

We first simulate dataset to see how the proposed iterative procedure of

the conditional variance regression model can work out the heteroscedasticity.

The simulated data has one predictor and one outcome. The model

parameters (including the intercept and regression coefficient) are assigned

values as coef <- c(1,0.5). The variance is a function of the predictor x,

i.e., which equals to 0.5+0.8*x^2.

Conditional variance function
Simulate a regression model with heterogeneous variance
gen_data <- function(n, coef, v_noise) {
 x <- rnorm(100,0,2)
 eps <- rnorm(100,0,sapply(x,function(x){0.5+0.8*x^2}))
 X <- cbind(1,x)
 y <- as.numeric(X %*% coef + eps)
 return(data.frame(x = x, y = y))
}
n_train <- 100
coef <- c(1,0.5)
v_noise <- 2.5
tempData <- gen_data(n_train, coef, v_noise)

While this data presents a typical heteroscedasticity problem, in what

follows we apply a regular linear regression model with assumption of

278

homogenous variance. The fitted line is shown in Figure 9.4, indicating a

significant derivation from the true regression model.

Fit the data using linear regression model (OLS)
x <- tempData[, "x"]
y <- tempData[, "y"]
fit.ols <- lm(y~x,data=tempData)
Plot the data and the models
x <- tempData$x
X <- cbind(1, x)
y <- tempData$y
plot(y ~ x, col = "gray", lwd = 2)
Plot the true model
lines(x, X %*% coef, lwd = 3, col = "black")
Plot the linear regression model (OLS)
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange")
legend(x = "topleft", legend = c("True function", "Linear model
(OLS)"),
 lwd = rep(4, 4), col = c("black", "darkorange"), text.widt
h = 4, cex = 1)

Figure 9.4: Linear regression model to fit a heteroscedastic dataset

We can generate the residuals based on the fitted regular linear regression

model, which are plotted in Figure 9.5. A nonlinear regression model, the

kernel smoother regression model implemented by npreg(), is fitted on these

residuals. The true function of the variance is also shown as the black line in

Analytics of Small Data

279

Figure 9.5. It can be seen that the residuals encode the information for us to

approximate the underlying true variance function.

Plot the residual estimated from the linear regression model (O
LS)
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2)
Plot the true model underlying the variance of the error term
curve((1+0.8*x^2)^2,col = "black", lwd = 3, add=TRUE)
Fit a nonlinear regression model for residuals
install.packages("np")
require(np)

var1 <- npreg(residuals(fit.ols)^2 ~ x)

grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge")
legend(x = "topleft", legend = c("True function", "Fitted nonline
ar model (1st iter)"),
 lwd = rep(4, 4), col = c("black", "darkorange"), text.widt
h = 5, cex = 1.2)

Figure 9.5: Nonlinear regression model to fit the residuals

Thus, we fit another linear regression model with weights of the data

points assigned according to the inverse of the variance, i.e.,

weights=1/fitted(var1), to penalize the influence of the data points that

have larger variances on the fit of the regression line. The new regression

model is added into Figure 9.4, which generates Figure 9.6. It can be seen

280

that, with this strategy, the new regression model (the green line) is closer

with the true model than the regular linear regression model.

Fit a linear regression model (WLS) with the weights specified
by the fitted nonlinear model of the residuals
fit.wls <- lm(y~x,weights=1/fitted(var1))
plot(y ~ x, col = "gray", lwd = 2,ylim = c(-20,20))
Plot the true model
lines(x, X %*% coef, lwd = 3, col = "black")
Plot the linear regression model (OLS)
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange")
Plot the linear regression model (WLS) with estimated variance
function
lines(x, fitted(fit.wls), lwd = 3, col = "forestgreen")
legend(x = "topleft", legend = c("True function", "Linear (OLS)",
 "Linear (WLS) + estimated variance"),
 lwd = rep(4, 4), col = c("black", "darkorange","forestgree
n"), text.width = 5, cex = 1)

Figure 9.6: Fit the heteroscedastic dataset with two linear regression

models using OLS and WLS (that accounts for the heteroscedastic effects

with a nonlinear regression model to model the variance regression)

This process could proceed with updating the fitted variance function on

the new residuals, as shown in Figure 9.7. Here, it seems that the use of the

kernel smoother by npreg hits its limit as a local and data-driven model, that

could not correctly fit the curve in the two ends. If we have known the form

of the variance function as a second order polynomial function, we could use

parametric regression model to attain this fitting.

Analytics of Small Data

281

Plot the residual estimated from the linear regression model (O
LS)
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2)
Plot the true model underlying the variance of the error term
curve((1+0.8*x^2)^2,col = "black", lwd = 3, add=TRUE)
Fit a nonlinear regression model for residuals
install.packages("np")
require(np)
var2 <- npreg(residuals(fit.wls)^2 ~ x)

grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge")
lines(grid.x,predict(var2,exdat=grid.x), lwd = 3, col = "forestgr
een")
legend(x = "topleft", legend = c("True function", "Fitted nonline
ar model (1st iter)", "Fitted nonlinear model (2nd iter)"),
 lwd = rep(4, 4), col = c("black", "darkorange", "forestgre
en"), text.width = 6, cex = 1.2)

Figure 9.7: Nonlinear regression model to fit the residuals in the 2nd

iteration

Now let’s apply the conditional variance regression model on the AD

dataset. As what we did in the simulated dataset, we first fit a regular linear

regression model, then, use the kernel smoother regression model to fit the

residuals, and further fit a weighted linear regression model with weights of

the data points being assigned according to the inverse of the variance, i.e.,

weights=1/fitted(var1), to penalize the influence of the data points that

282

have larger variances on the fit of the regression line. Results are shown in

Figure 9.8.

AD <- read.csv('AD_bl.csv', header = TRUE)
str(AD)

Fit the data using linear regression model (OLS)
x <- AD$HippoNV
y <- AD$MMSCORE
fit.ols <- lm(y~x,data=AD)

Fit a linear regression model (WLS) with the weights specified
by the fitted nonlinear model of the residuals
var1 <- npreg(residuals(fit.ols)^2 ~ HippoNV, data = AD)

fit.wls <- lm(y~x,weights=1/fitted(var1))

plot(y ~ x, col = "gray", lwd = 2)
Plot the linear regression model (OLS)
lines(x, fitted(fit.ols), lwd = 3, col = "darkorange")
Plot the linear regression model (WLS) with estimated variance
function
lines(x, fitted(fit.wls), lwd = 3, col = "forestgreen")
legend(x = "topleft", legend = c("Linear (OLS)", "Linear (WLS) +
estimated variance"),
 lwd = rep(4, 4), col = c("darkorange","forestgreen"), tex
t.width = 0.2, cex = 1)

Figure 9.8: Fit the heteroscedastic AD dataset with two linear regression

models using OLS and WLS (that accounts for the heteroscedastic effects

with a nonlinear regression model to model the variance regression)

Analytics of Small Data

283

We can also visualize the fitted variance functions in Figure 9.9 via the

following R code.

Plot the residual estimated from the linear regression model (O
LS)
plot(x,residuals(fit.ols)^2,ylab="squared residuals",col = "gray
", lwd = 2)
Fit a nonlinear regression model for residuals
install.packages("np")
require(np)
var2 <- npreg(residuals(fit.wls)^2 ~ x)

grid.x <- seq(from=min(x),to=max(x),length.out=300)
lines(grid.x,predict(var1,exdat=grid.x), lwd = 3, col = "darkoran
ge")
lines(grid.x,predict(var2,exdat=grid.x), lwd = 3, col = "forestgr
een")
legend(x = "topleft", legend = c("Fitted nonlinear model (1st ite
r)", "Fitted nonlinear model (2nd iter)"),
 lwd = rep(4, 4), col = c("darkorange", "forestgreen"), te
xt.width = 0.25, cex = 1.2)

Figure 9.9: Nonlinear regression model to fit the residuals in the 2nd

iteration for the AD data

It can be seen that, the heteroscedasticity problem is significant in this

problem. Learning the variance function is helpful in this context in terms of

at least two aspects. First, in terms of the statistical aspect, it improves the

fitting of the regression line. Second, knowing the variance function itself is

284

important knowledge in healthcare, e.g., as variance implies unpredictability

or low quality in healthcare operations.

II.4 Remark

For regression problems, the interest is usually on the modeling of the

relationship between the mean of the outcome variable with the input

variables. Thus, when there is heteroscedasticity in the data, a nonparametric

regression method is recommended to estimate the latent variance

information, more from a curve fitting perspective which is to smooth and

estimate, rather than a modeling perspective to study the relationship

between the outcome variable with input variables. But, of course, this usual

tendency doesn’t exclude the possibility that we can still study how the input

variables affect the variance of the response variable explicitly. Specifically,

as the linear regression as we know is a model to link the mean of 𝑌 with the

input variables 𝑋, we can develop an analogical linear regression model to

link the variance of 𝑌 with the input variables 𝑋. The iterative procedure

developed above is still applicable here.

IV. System Monitoring as a Decision Tree Model

IV.1 Rationale and Formulation

Another method we’d like to introduce is an interesting framework that

was proposed1 to convert quality monitoring problem in statistical quality

control into a classification problem. This is built on the following insight

about quality monitoring as a statistical problem that does things with data.

In a quality monitoring problem, we often collect the so-called “reference

data” from the process in normal conditions. The objective of quality

monitoring of this process is to trigger alerts if the new data that come in real

time deviate from the reference data. It is hoped that the alerts could

1 Deng, H., Runger, G. and Tuv, E. System monitoring with real-time contrasts. Journal of

quality technology, 2012

Analytics of Small Data

285

correspond to real anomaly happening in the process, with a small rate of

false positive (i.e., alerts triggered when the process is actually normal).

Figure 9.10 shows a monitoring problem. At time 1 to time 40, the

reference data are collected from a normal process. From time 41, we

monitor the process with real-time data. As the process from time 41 to time

80 is under normal condition, we should not trigger any alert. From time 81,

the process is abnormal and therefore it is expect that the quality monitoring

system should trigger an alert as soon as possible.

Figure 9.10: Illustration of the quality monitoring problem

In this 1-dimensional example, i.e., monitoring a process using one

variable, it is easy to see that the data has an increased mean. However, when

there are multiple dimensions, it is desirable to know which variables are

causing the process abnormal. This so-called fault diagnosis problem is

crucial. In this section, we discuss how we covert the problem to a

classification problem where decision trees can be used for both monitoring

and diagnosis.

IV.2 Theory/Method

Let 𝒙 to be a 𝑝 dimensional vector of the process. First, we collect a few

data points under normal condition which form the reference data. Let

𝑓0(𝒙) denote the distribution of the 𝑝 process variables when the system is

286

under normal condition. Let 𝑓1(𝒙) denote the distribution of the data points

in monitoring. The goal of monitoring is to trigger an alert as quick as

possible if 𝑓1(𝒙) differs from 𝑓0(𝒙), while at the same time, to reduce false

alert when 𝑓1(𝒙) is the same as 𝑓0(𝒙).

One may notice that this is a typical scenario considered in multivariate

quality monitoring literature. Indeed, if the variables are continuous as

considered in most existing multivariate quality control charts, one may use

traditional control charts like Hoteling’s 𝑇2 chart. However, these methods

have difficulty handling more complex datasets, e.g., having both categorical

and continuous variables. With the transformation of the monitoring

problem into a stack of classification problems, we can overcome these data

challenges as described in what follows.

Table 9.2: An exemplary time series dataset with 4 time points

Time 1 2 3 4

Value 2 1 3 3

Here we introduce the real-time contrasts method (RTC). The key idea

of RTC method is to have a sliding window, with length of 𝐿, that includes

the most recent data points to be compared with the reference data.

Specifically, we label the reference data as one class, and the data points in

the sliding window as another class, formulating a classification problem. The

intuition is that, if the two data sets come from the same distribution, it is

difficult to classify the two data sets and will result in a large classification

error. But, if the training error is small, the real-time data may be different

from the reference data, and will result in a small classification error.

Therefore, the training error in building the classification model can be used

as a metric indicating the difficulty classifying the two datasets.

Analytics of Small Data

287

Here we illustrate this intuition through a 1-dimenaional problem where

the variable takes values either as 1 or 2. We also assume that, the reference

data have been collected as {1,2}. The collected data for monitoring is shown

in the Table 9.2.

To monitor the process, we use a window size of 2. That is say, the first

monitoring action takes place at time 2 since we can collect two data points

to compare with the reference data. At time 2, the 2 most recent data points

are 1 and 2. The reference data set {1,2} is labeled as class 0, and the data

points captured by the window with size of 2, i.e., {2,1}, are labeled as class

1. It can be seen that these two data sets are identical. Thus, the classification

error rate is 0.5, which is very large.

At time 3, the sliding window now includes data points {1,3}. A

classification rule “value <= 2, then class 0; else class 1” would achieve the

best classification error rate as 0.25.

At time 4, the sliding window includes data points {3,3}. The same

classification rule “value <= 2, then class 0; else class 1” can classify all

example correctly with error rate of 0.

Through this example we can see that the classification error rate could

be a monitoring statistic to guide the triggering of alerts. While we use a

simple classification rule in this example since we only have one process

variable with very simple value domains, in more complex problems, we can

use other classification models such as Random forest models.

Actually, through in-depth research into this idea of directly using

classification error rate as the monitoring statistic, a limitation soon reveals

itself. Considering the number of data points in the monitoring window,

which is 𝐿. The number of possible distinct classification error rate values are

actually limited to be 𝐿 + 1. This suggests that, while the monitoring statistic

should be a continuum, the resolution of the classification error rate to reflect

the continuum maybe limited if the window size is too small. This will result

in gaps between the monitoring statistics, failing to capture changes that

happen in the gaps which are blind zones.

288

As a remedy, the probability estimates of the data points can be used to

replace the errors of the data points. The probability estimates are continuous

indicators, while the errors are binary indicators. Then, the sum of the

probability estimates from all data points in the sliding window can be used

for monitoring, which is defined as:

𝑝𝑡 =
∑ 𝑝1(𝒙𝑖)
𝑤
𝑖=1

𝑤
.

Here, 𝒙𝑖 is the 𝑖𝑡ℎdata point in the sliding window, 𝑤 is the window size,

and �̂�1(𝒙𝑖) is the probability estimate of 𝒙𝑖 belonging to 𝑓1(𝒙). At each time

point in monitoring, we can obtain a 𝑝𝑡. Following the tradition of control

chart, we could chart the time series of 𝑝𝑡 and observe the patterns to see if

alerts should be triggered.

Besides this monitoring capacity, on the other hand, we could also use the

classification model for fault diagnosis. Specifically, when the random forest

is used for classification, the importance scores from random forests can be

used for fault diagnosis. When process is under normal conditions and the

classification errors are expected to be high, the importance scores are

expected to be equal among process variables as none of them contribute to

the classification problem. When process is abnormal, classification errors

should be reduced, and the variables responsible for the process abnormality

should now have larger importance scores. This gives us the foundation for

using random forest for fault diagnosis.

Note that, under the RTC framework, the size of the sliding window is

an important parameter. When the window is too long, the method requires

a large number of real-time data in each monitoring epoch, which can delay

the identification of abnormal patterns. In contrast, if the window is too

short, the classifiers built on the small data sets may be unstable and are prone

to more false positives. In our R lab, we will explore this phenomenon

further.

Analytics of Small Data

289

IV.3 R Lab

We have written up the RTC method into the R function, Monitoring(),

as shown in below. The Monitoring function takes two datasets as input, the

first one being the reference data, and the second one being the real-time data

points. The window size also should be provided. The function returns a few

monitoring statistics for each real-time data point, and the importance score

of each variable.

library(dplyr)
library(tidyr)
library(randomForest)
library(ggplot2)

theme_set(theme_gray(base_size = 15))

define monitoring function. data0: reference data; data.real.ti
me: real-time data; wsz: window size
Monitoring <- function(data0, data.real.time, wsz){
 num.data.points <- nrow(data.real.time)
 stat.mat <- NULL
 importance.mat <- NULL

 for(i in 1:num.data.points){
 # at the start of monitoring, when real-time data size is sma
ll than the window size, combine the real-time data points and ra
ndom samples from the reference data to form a data set of wsz
 if(i<wsz){
 sample.size.from.reference <- wsz - i
 sample.reference <- data0[sample(nrow(data0),sample.size.f
rom.reference,replace = TRUE),]
 current.real.time.data <- rbind(sample.reference, data.rea
l.time[1:i,,drop=FALSE])
 }else{
 current.real.time.data <- data.real.time[(i-wsz+1):i,,drop
=FALSE]
 }
 current.real.time.data$class <- 1
 data <- rbind(data0, current.real.time.data)
 colnames(data) <- c(paste0("X",1:(ncol(data)-1)),"Class")
 data$Class <- as.factor(data$Class)

 # apply random forests to the data
 my.rf <- randomForest(Class ~.,sampsize=c(wsz,wsz), data=dat
a)

290

 # get importance score
 importance.mat <- rbind(importance.mat, t(my.rf$importance
))
 # get monitoring statistics
 ooblist <- my.rf[5]
 oobcolumn=matrix(c(ooblist[[1]]),2:3)
 ooberrornormal= (oobcolumn[,3])[1]
 ooberrorabnormal=(oobcolumn[,3])[2]

 temp=my.rf[6]
 p1vote <- mean(temp$votes[,2][(nrow(data0)+1) : nrow(data)
])

 this.stat <- c(ooberrornormal,ooberrorabnormal,p1vote)
 stat.mat <- rbind(stat.mat, this.stat)
 }
 result <- list(importance.mat = importance.mat, stat.mat = sta
t.mat)
 return(result)
}

First, let’s consider a 2-dimesional data. The reference data follow a

normal distribution with mean of 0 and standard deviation of 1. The real-

time data come from two distributions. The first 100 data points have the

same distribution as the reference data, while the second 100 data points have

the second variable changed with mean of 2. Note that, here we label the

reference data with class 0 and the real-time data with class 1.

data generation
sizes of reference data, real-time data without change, and rea
l-time data with changes
length0 <- 100
length1 <- 100
length2 <- 100

2-dimension
dimension <- 2

reference data
data0 <- rnorm(dimension * length0, mean = 0, sd = 1)
real-time data with no change
data1 <- rnorm(dimension * length2, mean = 0, sd = 1)
real-time data different from the reference data in the second
the variable
data2 <- cbind(V1 = rnorm(1 * length1, mean = 0, sd = 1), V2 =
rnorm(1 * length1, mean = 2, sd = 1))

Analytics of Small Data

291

convert to data frame
data0 <- matrix(data0, nrow = length0, byrow = TRUE) %>% as.data.
frame()
data1 <- matrix(data1, nrow = length2, byrow = TRUE) %>% as.data.
frame()
data2 <- data2 %>% as.data.frame()

assign variable names
colnames(data0) <- paste0("X",1:ncol(data0))
colnames(data1) <- paste0("X",1:ncol(data1))
colnames(data2) <- paste0("X",1:ncol(data2))

assign reference data with class 0 and real-time data with clas
s 1
data0 <- data0 %>% mutate(class = 0)
data1 <- data1 %>% mutate(class = 1)
data2 <- data2 %>% mutate(class = 1)

real-time data consists of normal data and abnormal data
data.real.time <- rbind(data1,data2)

Figure 9.11: Scatterplot of the generated data points in the first 100 time

points that come from the process under normal condition

Before we run the Monitor function, we show the scatterplot of the
reference dataset and the dataset from the first 100 time points to obtain a
visual sense of the data.

292

data.plot <- rbind(data0, data1) %>% mutate(class = factor(clas
s))
ggplot(data.plot, aes(x=X1, y=X2, shape = class, color=class)) +
 geom_point(size=3)

Then we can obtain Figure 9.11. It can be seen that the two sets of data
points are similar.

We also show the scatterplot of the reference dataset and the dataset from

the second 100 time points.

data.plot <- rbind(data0, data2) %>% mutate(class = factor(clas
s))
ggplot(data.plot, aes(x=X1, y=X2, shape = class, color=class)) +
 geom_point(size=3)

Then we can obtain Figure 9.12. It can be seen that for the real-time data

set, X_2 has changed mean from 0 to 2.

Figure 9.12: Scatterplot of the generated data points in the second 100

time points that come from the process under abnormal condition

Now we are ready to apply the RTC method. A window size of 10 is

applied for monitoring. The error rates from the reference data, and the real-

time data, and the probability estimates for the second class are shown in

Figure 9.13 drew by the following R code.

Analytics of Small Data

293

wsz <- 10
result <- Monitoring(data0, data.real.time, wsz)
stat.mat <- result$stat.mat
importance.mat <- result$importance.mat

plot different monitor statistics
stat.mat <- data.frame(stat.mat)
stat.mat$id <- 1:nrow(stat.mat)
colnames(stat.mat) <- c("error0","error1","prob","id")
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob)
ggplot(stat.mat,aes(x=id,y=statistics,color=type)) + geom_line(li
netype = "dashed") + geom_point() + geom_point(size=2)

Figure 9.13: Chart of the monitoring statistics from time 1 to time 200.

Three monitoring statistics are shown: error0 denotes for the error rate in

Class 0, error1 denotes for the error rate in Class 1, and prob denotes for

the probability estimates of the data points

As we have known that a process shift happened on X2 after the 100th

data point, a good monitor statistic should significantly signal the process

change after the 100th data point, the sooner the better. As we can see, there

is a slight decrease for the error rates from the reference dataset, but the

decrease is not substantial. The probability estimates of the data points in the

reference data have more obvious increase. Similar observation can be made

294

for the error rates from the dataset captured by the sliding window. However,

the error rates from the reference data jump among a small number of

distinct values. As mentioned earlier, the number of distinct values would

further reduce with a smaller sliding window. Thus, this experiment confirms

that the probability estimates lead to smoother monitoring statistic and have

a significant change during the process transition phase.

Figure 9.14: Chart of the importance score of the two process variables

from time 1 to time 200

Next, let’s consider fault diagnosis. Variable importance scores from the

two variables from the random forests are shown in Figure 9.14 drew by the

following R code.

plot importance scores for diagnosis
importance.mat <- data.frame(importance.mat)
importance.mat$id <- 1:nrow(importance.mat)
colnames(importance.mat) <- c("X1","X2","id")
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2)

ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed") + geom_point(size=2)

Analytics of Small Data

295

From Figure 9.14, we can see that the importance scores of X2

significantly increase after the 100th point. This indicates that X2 plays an

important role in improving the classification and may be responsible for the

process change.

Figure 9.15: Chart of the monitoring statistics from time 1 to time 200

(window size increases to 20)

As we have mentioned, the size of the window for monitoring is an

important parameter. Here, to see its effect, the window size is increased to

20. The monitoring statistics and importance scores are re-plotted in Figure

9.15 and Figure 9.16.

change window size to 20
wsz <- 20
result <- Monitoring(data0, data.real.time, wsz)
stat.mat <- result$stat.mat
importance.mat <- result$importance.mat

plot different monitor statistics
stat.mat <- data.frame(stat.mat)
stat.mat$id <- 1:nrow(stat.mat)
colnames(stat.mat) <- c("error0","error1","prob","id")
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob)

296

ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2)

plot importance scores for diagnosis
importance.mat <- data.frame(importance.mat)
importance.mat$id <- 1:nrow(importance.mat)
colnames(importance.mat) <- c("X1","X2","id")
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2)

ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed") + geom_point(size=2)

Figure 9.16: Chart of the importance score of the two process variables

from time 1 to time 200 (window size increases to 20)

Compared to the previous results with window size of 10, the monitoring

statistics on the changed real-time data points have a clearer increase from

the un-changed real-time data. Similarly, the increase of the importance score

of X2 is stronger. However, the change of the monitoring statistics and

importance scores is slightly slower than the change with a smaller window.

Therefore, a large window size can lead to more confident alert, but with a

slower speed.

Now, let’s change the window size to 5. The monitoring statistics and

importance scores are re-plotted in Figure 9.17 and Figure 9.18.

Analytics of Small Data

297

change window size to 5
wsz <- 5
result <- Monitoring(data0, data.real.time, wsz)
stat.mat <- result$stat.mat
importance.mat <- result$importance.mat

plot different monitor statistics
stat.mat <- data.frame(stat.mat)
stat.mat$id <- 1:nrow(stat.mat)
colnames(stat.mat) <- c("error0","error1","prob","id")
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob)
ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2)

Figure 9.17: Chart of the monitoring statistics from time 1 to time 200

(window size decreases to 5)

plot importance scores for diagnosis
importance.mat <- data.frame(importance.mat)
importance.mat$id <- 1:nrow(importance.mat)
colnames(importance.mat) <- c("X1","X2","id")
importance.mat <- importance.mat %>% gather(variable, importance,
X1,X2)

ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed") + geom_point(size=2)

298

Figure 9.18: Chart of the importance score of the two process variables

from time 1 to time 200 (window size decreases to 5)

Obviously, the monitoring statistic seems to be more noisy, producing

less confident patterns, but it raises quicker alert at the 101th time point.

Now, let’s consider a 10-dimensional dataset. In this example, two

variables' means change from 0 to 2 in the second 100 data points.

10-dimensions, with 2 variables being changed from the normal c
ondition
dimension <- 10
wsz <- 5
reference data
data0 <- rnorm(dimension * length0, mean = 0, sd = 1)
real-time data with no change
data1 <- rnorm(dimension * length1, mean = 0, sd = 1)
real-time data different from the reference data in the second
the variable
data2 <- c(rnorm((dimension - 2) * length2, mean = 0, sd = 1),
rnorm((2) * length2, mean = 20, sd = 1))

convert to data frame
data0 <- matrix(data0, nrow = length0, byrow = TRUE) %>% as.data.
frame()
data1 <- matrix(data1, nrow = length1, byrow = TRUE) %>% as.data.
frame()
data2 <- matrix(data2, ncol = 10, byrow = FALSE) %>% as.data.fram
e()

Analytics of Small Data

299

assign reference data with class 0 and real-time data with clas
s 1
data0 <- data0 %>% mutate(class = 0)
data1 <- data1 %>% mutate(class = 1)
data2 <- data2 %>% mutate(class = 1)

real-time data consists of normal data and abnormal data
data.real.time <- rbind(data1,data2)

Figure 9.19: Chart of the monitoring statistics from time 1 to time 200

(window size is 10)

10 dimensions are difficult to visualize and monitor. Encouragingly, the

monitoring statistics shown in Figure 9.19 shows that the RTC method is still

capable of capturing the changes. It is clear in Figure 9.19 that all the

monitoring statistics change after the 101th time point, and the importance

scores in Figure 9.20 also indicate the change is due to X9 and X10. The

following R codes generated Figure 9.19.

result <- Monitoring(data0, data.real.time, wsz)
stat.mat <- result$stat.mat
importance.mat <- result$importance.mat

plot different monitor statistics
stat.mat <- data.frame(stat.mat)
stat.mat$id <- 1:nrow(stat.mat)

300

colnames(stat.mat) <- c("error0","error1","prob","id")
stat.mat <- stat.mat %>% gather(type, statistics, error0,error1,p
rob)
ggplot(stat.mat,aes(x=id,y=statistics,color=type))+ geom_line(lin
etype = "dashed") + geom_point() + geom_point(size=2)

Figure 9.20: Chart of the importance score of the ten process variables

from time 1 to time 200 (window size is 10)

The following R codes generated Figure 9.20.

plot importance scores for diagnosis
importance.mat <- data.frame(importance.mat)
importance.mat$id <- 1:nrow(importance.mat)
colnames(importance.mat) <- c("X1","X2","id")
importance.mat <- importance.mat %>% gather(variable, importance,
X1:X10)
importance.mat$variable <- factor(importance.mat$variable, level
s = paste0("X", 1:10))
levels(importance.mat$variable) <- paste0("X", 1:10)
ggplot(importance.mat,aes(x=id,y=importance,color=variable)) + ge
om_line(linetype = "dashed") + geom_point(size=2)

IV.4 Remarks

There is an important technical aspect to implement the RTC method.

Realistically, to capture the normal conditions of a process, many data points

Analytics of Small Data

301

are needed to define the reference dataset. On the other hand, to capture

process changes more sensitively, the window size for online monitoring

should not be too large. Thus, comparing with the sample size in the

reference dataset, an effective window size is typically substantially smaller

than the size of reference data. Therefore, this usually leads to a highly

imbalanced classification problem.

As a remedy, the random forest model can handle class imbalance by

under-sampling the reference data to be the same size as the sliding window

data for each tree. That is to say, instead of sampling uniformly the data

points for each tree (as shown in the left figure in Figure 9.21), the same

number of samples are selected from the reference data and the sliding

window data (as shown in the right figure in Figure 9.21).

Figure 9.21: Regular sampling (left) and purposeful equal sampling (right)

by random forest to grow its trees

IV. Exercises

Data analysis

1. Find 10 regression datasets from the UCI data repository or R

datasets. Build kernel regression model, KNN regression model, and

linear regression models. Conduct model selection and validation.

Use cross-validation to select the best models. Compare the models

and comment on their applications on these datasets.

302

2. Identify 3 datasets from the UCI data repository or R datasets that

the heteroscedasticity may be a problem. Build the conditional

variance regression model on these datasets. Compare the

conditional variance regression model with linear regression model.

Programming

3. Use bootstrap to show the conditional variance regression model is

significantly better than linear regression model on the datasets you

have selected that have the problem of heteroscedasticity. Write your

own R script to implement this idea. Make sure that, for datasets that

have no concern of heteroscedasticity, your approach would not

always advocate for the use of conditional variance regression model.

4. Implement the tree-based system monitoring method on a high-

dimensional dataset with more than 100 variables. You can simulate

such a dataset following the R lab in this chapter. See if the tree-

based system monitoring method can lead to quick detection of

process change, and accurate fault diagnosis (i.e., make sure in your

data, only a few variables are responsible for the process change).

Analytics of Small Data

303

CHAPTER 10: SYNTHESIS
INTREES /PIPEL INE ENGINEERING

I. Overview

Chapter 10 is about “synthesis”. It recognizes the practical dimension of

solving real-world problems, such as building pipelines that combine and

streamline a variety of models and operations. This is nonetheless a diverse

topic and anticipates many possible alternatives, depending on the particular

problems and contexts. To give one example, here, we introduce the method

implemented in the R package, InTrees1 , which combines decision tree,

random forest, and feature selection such as LASSO. Note that, as an

overarching framework, its combinatory power is not limited with these

models.

1 Deng, H. Interpreting tree ensembles with inTrees. Manuscript available at:

https://arxiv.org/abs/1408.5456

304

II. InTrees

II.1 Rationale and Formulation

As we have seen that, the linear regression models are advantageous in

providing a linear characterization of a multivariate system. Although its

ostensible interpretability comes with a question mark, it is undoubtable a

more interpretable model than the tree models. Tree models are more like

approximating the data and build on their power in capturing complex

interactions between variables. Given their different advantages, it is natural

to wonder if we could combine both models and get the best of both. From

a pragmatic perspective, as Prof. George Box has pointed out, “all models are

wrong, some are useful”, neither model is the truth, but we can always make the

model better in terms of some quantitative criterion such as prediction

accuracy on testing data or qualitative criterion such as interpretability.

To combine the two models, first, we may notice that the two models

employ different semantics: the regression model uses an equation-based

semantics, that is more mathematically and formative; the tree model uses a

rule-based semantics, which is more intuitive and heuristic. Can we have a

hybrid model that combines both semantics? Sure, we could. One approach

we can use is to plug in one semantics into another.

For example, while regression model puts variables into the equation, the

variables are defined by users. So, what are the variables?

This is the starting point of InTrees. It takes rules as the variables that can

be put into a regression model. To get the rules, InTrees harvests the power

of random forest to convert the original raw data into a new dataset whose

variables are the rules. As we know, rules represent complex interactions

between variables. In this way, we have the best parts of both methods, while

the rules capture the variable-level patterns in the data, and the regression

equation captures the global effects of these patterns in predicting the

outcome variable.

Analytics of Small Data

305

II.2 Theory and Method

Consider the following dataset that has 2 predictors and 7 instances as

shown in Table 10.1.

Table 10.1: An exemplary dataset with 7 instances

ID 𝑋1 𝑋2 Class

1 1 1 C0

2 1 0 C1

3 0 1 C1

4 0 0 C1

5 0 0 C0

6 0 0 C0

7 0 0 C0

Importance scores from the random forest model can provide insights

regarding which variables are important, however, it is still not

straightforward to understand. For example, the importance scores from

random forests applied to the dataset in Table 10.1 are shown in Figure 10.1.

We can only know that 𝑋1 and 𝑋2 have similar importance scores, but it is

unclear how exactly these variables work together to predict the class.

Figure 10.1: Importance score of two variables

To this end, the inTrees framework, illustrated in Figure 10.2, was

proposed to extract, measure, prune, and select rules from a tree ensemble.

It will further calculate frequent variable interactions, and summarize rules

306

into a prediction model (rules become the variables). The framework has

been implemented in the ``inTrees" R package. In the following we

introduce each functionality of the inTrees framework.

Figure 10.2: The pipeline of inTrees

Rule extraction and measuring: A decision tree can be dissembled into

a set of rules. For example, considering the decision tree shown in Figure

10.3, which was created as one tree of the random forest model applied on

the dataset shown in Table 1. It can be seen that the tree was built based on

the resampled dataset that includes the instances {1,1,2,2,7,7,7}. In other

words, in this resampled dataset, the instance (ID: 1) was resampled twice,

the instance (ID: 2) was resampled twice, and the instance (ID: 7) was

resampled three times. In the tree, the root and inner nodes are labeled with

the data point IDs and leaf nodes are labeled with the data point IDs and the

decisions (i.e., which class to predict). Here, three rules can be

extracted: { 𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} , { 𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} ,

{𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}.

Analytics of Small Data

307

Figure 10.3: An exemplary decision tree

Generally, in a decision tree, a rule can be extracted from the root node

to each leaf node as {𝑋𝑖1 = 𝑎𝑖1 , … , 𝑋𝑖𝑘 = 𝑎𝑖𝑘 → 𝑇 = 𝑡} , where 𝑋𝑖𝑗

represents the variable used in the path from the root node to a leaf node,

𝑋𝑖𝑗 = 𝑎𝑖𝑗 represents the criterion for splitting at node 𝑖𝑗, and 𝑇 = 𝑡 is the

outcome at the leaf node. Note 𝑎𝑖𝑗 can be a range when 𝑋𝑖𝑗 is numerical and

a set of values when it is categorical.

Thus, for a random forest model, we can extract a set of rules by

dissembling all its trees. There is one complication, though, that in random

forest, as we have mentioned in Chapter 4, each tree is built on a subset of

samples and a subset of features in order to be a weak model. That means,

we need to revise the outcome of each rule that maybe different from the

original outcome associated with this rule provided by the tree. In the inTrees

framework, the outcomes from the original rules are ignored. Instead, the

outcomes are re-calculated using all the training data, such that the most

frequent class is used as the outcome.

For example, for the rule {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} derived from the

decision tree shown in Figure 10.3, the three data points (the same instance)

have the class of 𝐶1. However, when using all the raining data, there are five

data points (IDs: 3-7) satisfying 𝑋1 = 0, and 3/5 of the data points have class

308

of 𝐶0. Therefore, the rule should be updated with the outcome as 𝐶0. The

other two rules remain the same since the classes from the tree are consistent

with the most frequent classes when applied to all the training data.

After we collect all the rules from the random forest model, the rules are

evaluated with three criteria. The length of a rule is defined as the number

of variable-value pairs in the rule condition. The frequency of a rule is the

proportion of data points satisfying the rule condition, the left-hand part of

the rule. The error is the error rate of the rule. For classification problems, it

is the number of data points incorrectly identified by the rule divided by the

number of data points satisfying the condition. For regression problems, it is

mean squared error defined as:

𝑒𝑟𝑟 =
1

𝑘
∑ (𝑡𝑖
𝑘
𝑖=1 − �̃�)2,

where 𝑘 is the number of data points in the leaf node, 𝑡𝑖 is the value of the

response variable of the 𝑖𝑡ℎ data point, and �̃� is the prediction at the leaf node.

For the illustrative example and decision tree, the evaluation of the three

rules are shown in the Table 10.2.

Table 10.2: Evaluation of the three rules extracted from the tree shown in

Figure 10.3

ID Rule length frequency error

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 1 5/7 2/5

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 2 1/7 0

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 1 1/7 0

Prune rules: As each tree in a tree ensemble can be weak, the rules we

collect can include irrelevant and redundant variable-value pairs. Therefore,

it may be beneficial to remove/prune irrelevant and redundant rules.

Analytics of Small Data

309

Let 𝑝𝑖 denote the 𝑖𝑡ℎ variable-value pair of a rule condition, such that a

rule can be written as < 𝑝1, … , 𝑝𝑘 > → 𝑇 = 𝑡. To prune the rule, inTrees

uses leave-one-out pruning, that is, at each round, removes one pair and

checks how much error this removal will induce. The pair with the least error

increase is removed, if it is also below a pre-specified threshold. The increase

of error is referred as the decay in the terminology of inTrees.

Two types of decay are defined. The first one is the absolute error increase,

defined as:

𝑑𝑒𝑐𝑎𝑦𝑖 = 𝐸𝑟𝑟−𝑖 − 𝐸𝑟𝑟.

The second one is the relative error increase, defined as:

𝑑𝑒𝑐𝑎𝑦𝑖 =
𝐸𝑟𝑟−𝑖−𝐸𝑟𝑟

max (𝐸𝑟𝑟,𝑠)
,

where 𝐸𝑟𝑟 is the error of the original rule, 𝐸𝑟𝑟−𝑖 is the error of the rule with

the 𝑝𝑖 removed, and 𝑠 is a small positive constant (e.g., 0.001) that bounds

the value of 𝑑𝑒𝑐𝑎𝑦 when 𝐸𝑟𝑟 is zero or close to zero.

 Take rule {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} for example. The error for

this rule is known to be 0 if we check the illustrative dataset aforementioned.

Assume that the threshold is 0.05. Now remove 𝑋1! = 0 from the rule

condition, and the new rule becomes {𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}, which has an

error of 3/5. Therefore, the absolute error increase is 3/5. Therefore, 𝑋1! =

0 should not be pruned.

On the other hand, we can also see that the relative error increase is
3

5∗𝑠
.

With a default value as 𝑠 = 0.001, the relative error increase is also large,

indicating that 𝑋1! = 0 should not be pruned.

Now let’s remove 𝑋2 = 0. The resulting rule {𝑋1! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}

has an error of 1/2. Therefore, removing 𝑋2 = 0 also hurts the accuracy of

the rule. The rule should not be pruned.

310

Let’s do another example. Suppose that the rules are built with the

following data set shown in Table 10.3.

Table 10.3: An exemplary dataset

ID 𝑋1 𝑋2 Class

1 1 0 𝐶1

2 1 0 𝐶1

3 1 1 𝐶0

4 0 1 𝐶0

On this dataset, the rule {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} has an error

of 0. The error after removing 𝑋1! = 0 is still 0, therefore, both the absolute

and relative error increase are 0. The error after removing 𝑋2 = 0 becomes

1/4. Therefore, the absolute error increase is 0.25, and the relative error

increase is
1

4∗𝑠
 . Thus, 𝑋1 = 0 should be removed, and the new pruned rule

becomes {𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}. This pruning process will continue. After

removing 𝑋2 = 0 from the rule, the rule is effectively a random guess, thus

the error becomes 0.5. This indicates that no variable-value pair can be

removed, the pruning should be stopped, and the final rule is {𝑋2 = 0 →

𝐶𝑙𝑎𝑠𝑠 = 𝐶1}.

Select rules: In previous sections, each rule is pruned and the pruned

rules can be ranked by accuracy, frequency and complexity. However, a tree

ensemble can generate numerous rules, and many of them can be redundant.

If the top rules tend to be redundant rules, the ranked rule set is again hard

to interpret. Therefore, selecting a non-redundant rule set is valuable for

interpretation.

Analytics of Small Data

311

The inTrees framework casts the rule selection problem into the feature

selection formulation. This is built on the creation of a new dataset based on

the rule set that binarizes the original dataset. For example, continue our

discussion of the dataset with 7 instances as shown in Table 10.1, the three

rules we have collected are shown in Table 10.4.

Table 10.4: The three rules

ID Rule

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}

Table 10.5: The binarized dataset of Table 10.1 by the rules in Table 10.4

ID 𝑍1 𝑍2 𝑍3 Class

1 0 0 1 C0

2 0 1 0 C1

3 1 0 0 C1

4 1 0 0 C1

5 1 0 0 C0

6 1 0 0 C0

7 1 0 0 C0

Consider {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} first. In the new dataset, a binary

feature 𝑍1 is created for the condition. The instances satisfying the condition

𝑋1 = 0 include {3,4,5,6,7} and therefore, the binary feature values of the

instances are {0,0,1,1,1,1,1}. For {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}, only

instance 2 satisfies the condition, and therefore, the binary feature values of

the instances for the second rule is {0,1,0,0,0,0,0}. Similarly, the feature

312

values for the third rule is {1,0,0,0,0,0,0}. Following this process, the new

converted data set is shown in Table 10.5.

Now a feature selection method can be applied on this new data set. The

goal of feature selection is to select a subset of relevant but not redundant

features from the original features. Feature selection methods include 𝐿1

regularized logistics regression (or LASSO) and regularized random forests

are used in the inTrees R package. Suppose a feature selection method selects

the feature subset as {𝑍1, 𝑍2}. It indicates that only the first and second rules

should be used in prediction.

Note that the binary feature representation does not include the

information about the length of rules. Given two rules with the same

predictive power, the rule with a smaller length may be preferred in terms of

interpretability. In the inTrees framework, the guided regularized random

forests are used. The guided regularized random forests (GRRF) can assign

a weight to each feature, so that when two features have similar predictive

power, the feature with more weight is more likely to be selected. In this case,

shorter rules are more likely to be selected.

Frequent variable interaction: The inTrees framework further provides

extraction of variable interactions that have been important in the selected

rules. A rule essentially encodes these interaction information, e.g., the rule

{𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} captures the interaction between 𝑋1 and

𝑋2.

Consider the following set of rules extracted by inTrees. Association rule

analysis is used for mining the frequent variable-value pairs from the rules.

In particular, each variable-value pair is considered as an item.

First, let’s consider all the rule conditions (left-hand side of the rules).

Define the support of a particular interaction pattern (e.g., 𝑋1 and 𝑋2) as the

number of rules that encode this interaction in the rule set, divided by the

size of the rule set (size = 4 for the illustrative example). For example, the

Analytics of Small Data

313

support of each variable interaction pattern extracted from the rules in Table

10.6 is calculated in Table 10.7.

Table 10.6: An exemplary set of rules

ID Rule

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}

4 {𝑋1! = 0, 𝑋2 = 0,𝑋3 = 1 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}

Table 10.7: Interaction patterns extracted from the rules in Table 5 and

their supports

Variable-value pairs (interaction patterns) Support

𝑋1 = 0 1/4

𝑋1! = 0 3/4

𝑋2 = 0 1/4

𝑋3 = 1 1/4

𝑋1! = 0, 𝑋2 = 0 2/4

𝑋1! = 0, 𝑋2! = 0 1/4

𝑋1! = 0, 𝑋2 = 0, 𝑋3 = 1 1/4

Hence, the most frequent interactions are 𝑋1! = 0 and 𝑋1! = 0, 𝑋2 = 0.

Now consider the right hand of each interaction. The confidence is defined

as the accuracy of an interaction pattern predicting a particular class. For

example, continuing the example mentioned above, the confidence of the

interactions can be calculated as shown in Table 10.8.

Table 10.8: Interaction patterns extracted from the rules in Table 10.6 and

their confidences

314

Variable-value pairs (interaction patterns) Class Confidence

𝑋1 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 1/1

𝑋1! = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 2/3

𝑋2 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/1

𝑋3 = 1 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/4

𝑋1! = 0, 𝑋2 = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 2/2

𝑋1! = 0, 𝑋2! = 0 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 1/1

𝑋1! = 0, 𝑋2 = 0, 𝑋3 = 1 𝐶𝑙𝑎𝑠𝑠 = 𝐶1 1/1

Combine both Tables, we can see the top variable interactions in terms

of confidence and support is

{𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}.

with a support of 0.5 and confidence of 1. This indicates this variable

interaction plays an important role in the tree ensemble.

Note that, for continuous features, it may be useful to do a discretization

before inputting the data into inTrees. This is because that there can be many

possible splitting points for continuous features in a tree, resulting in the

possibility that fewer frequent variable interactions for continuous features

could be identified.

Summarize rules: Once rules from tree ensembles are pruned and

selected, we can summarize these high-quality rules into classifiers. There are

multiple methods for summarizing. For example, the method RuleFit1 used

a linear model for summarizing the rules. Here, we introduce a simple

method to summarize the rules into an ordered rule set for prediction.

The method has multiple iterations. Denote 𝑟0 as the default rule (i.e.,

with null condition) that classifies all data points to the most frequent class.

Denote the ordered rule set as 𝑅, which is set to be empty at the beginning.

1 Friedman, J.H. and Popescu, B.E. Predictive learning via rule ensembles. Annals of applied

statistics, 2008.

Analytics of Small Data

315

Then, at each iteration, the best rule in the rule set is selected and added to

𝑅. The best rule is defined as the rule with the minimum error evaluated by

the training data. If there are ties, the rule with higher frequency and smaller

length is selected. Then, the data points that satisfy the condition of the best

rule are removed, and the default rule 𝑟0 is re-calculated with the data points

left. This iterative process continues until no instance is left in the training

dataset, or the default rule 𝑟0 has the best accuracy comparing with other

rules in the remaining rule set. Note that, the selected rules in 𝑅 are ordered

according to the sequence of their inclusion.

Consider the dataset shown in Table 1 and the rule set shown in Table 4.

At the beginning, the default rule is {𝐶𝑙𝑎𝑠𝑠 = 𝐶0} with error rate of 3/7. The

error rate and frequency of each rule is shown in Table 10.9.

Table 10.9: Error rates and frequencies of the rules in Table 10.5 using

dataset in Table 10.1

ID Rule Error Frequency

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/7

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} 0/1 1/7

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 0/1 1/7

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 3/7

In this case, Rule 1 and Rule 2 have the least errors, and their frequency

and length are also the same. Thus, we can select either of them to the

ordered rule set 𝑅 = {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} . Then, the data

point (ID:2) classified by this rule is removed. The default rule is still

{𝐶𝑙𝑎𝑠𝑠 = 𝐶0}, and the error and frequency of each rule on the new dataset

is updated in Table 10.10.

316

Table 10.10: Updated error rates and frequencies of the rules in Table 10.5

using the reduced dataset in Table 10.1 (data point ID:2 is removed)

ID Rule Error Frequency

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/6

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} NA 0/6

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 0/1 1/6

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 2/6

Table 10.11: Updated error rates and frequencies of the rules in Table 4

using the reduced dataset in Table 1 (data points ID:1 and ID:2 are

removed)

ID Rule Error Frequency

1 {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} 2/5 5/5

2 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1} NA 0/5

3 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} NA 0/5

4 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 2/5

Table 10.12: Final results of 𝑅

Order Rule

1 {𝑋1! = 0, 𝑋2 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶1}

2 {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}

3 𝐶𝑙𝑎𝑠𝑠 = 𝐶0

Then, {𝑋1! = 0, 𝑋2! = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0} is added to 𝑅 , and the data

point (ID:1) is removed. The default rule remains unchanged and the error

and frequency of each rule on the new dataset is updated in Table 10.11.

Analytics of Small Data

317

Now the default rule 𝐶𝑙𝑎𝑠𝑠 = 𝐶0 has the minimum error 2/5, the same

as {𝑋1 = 0 → 𝐶𝑙𝑎𝑠𝑠 = 𝐶0}. Therefore, the default rule is added to 𝑅 and

the process stops. The final ordered rule set 𝑅 is summarized in Table 10.12.

When predicting on an instance, the first rule in 𝑅 satisfying the data

point is used for prediction. For example, for a data point {𝑋1 = 0,𝑋2 = 1},

it does not satisfy neither Rule 1 or Rule 2 in 𝑅. Therefore, the default rule is

used, and the prediction is 𝐶0.

II.3 R Lab

Here we apply random forests to the AD dataset and use inTrees to

extract rules. First, based on the random forest model, 4555 rules are

extracted.

rm(list = ls(all = TRUE))
library("arules")
library("randomForest")
library("RRF")
library("inTrees")
library("reshape")
library("ggplot2")
set.seed(1)
path <- "../../data/AD_bl.csv"
data <- read.csv(path, header = TRUE)

target_indx <- which(colnames(data) == "DX_bl")
target <- paste0("class_", as.character(data[, target_indx]))
rm_indx <- which(colnames(data) %in% c("DX_bl", "ID", "TOTAL13",
"MMSCORE"))
X <- data
X <- X[, -rm_indx]
for (i in 1:ncol(X)) X[, i] <- as.factor(dicretizeVector(X[, i],
K = 3))

rf <- randomForest(X, as.factor(target))

treeList <- RF2List(rf) # transform rf object to an inTrees' for
mat
exec <- extractRules(treeList, X) # R-executable conditions

4555 rules (length<=6) were extracted from the first 100 tree
s.

318

Next, the rules are measured by length, error and frequency. E.g., the

statistics of 5 rules are shown in the graph below.

class <- paste0("class_", as.character(target))
rules <- getRuleMetric(exec, X, target)
print(rules[order(as.numeric(rules[, "len"])),][1:5,])

len freq err condition
[1,] "2" "0.118" "0.098" "X[,6] %in% c('L1') & X[,11] %in% c('L1')"
[2,] "2" "0.182" "0" "X[,4] %in% c('L1') & X[,6] %in% c('L1')"
[3,] "2" "0.182" "0" "X[,4] %in% c('L1') & X[,6] %in% c('L1')"
[4,] "2" "0.081" "0.024" "X[,3] %in% c('L3') & X[,4] %in% c('L3')"
[5,] "2" "0.043" "0.136" "X[,6] %in% c('L3') & X[,7] %in% c('L3')"
pred
[1,] "class_1"
[2,] "class_1"
[3,] "class_1"
[4,] "class_0"
[5,] "class_0"

For rule pruning, first, we try with absolute decay using a threshold of

0.005 (maxDecay = 0.005) to prune the rules, that is, a variable-pair is not

removed if the decay is larger than 0.005. The statistics of the rules before

and after pruning are shown in Figures 4-6.

Figure 10.4: Histogram of lengths of the rules before and after the pruning

Analytics of Small Data

319

The R code below generates Figure 10.4.

rules.pruned <- pruneRule(rules, X, target, maxDecay = 0.005, typ
eDecay = 2)

length <- data.frame(original = as.numeric(rules[, "len"]), prune
d = as.numeric(rules.pruned[,
 "len"]))
ggplot(melt(length), aes(value, fill = variable)) + geom_histogra
m(position = "dodge",
 binwidth = 0.4) + ggtitle("Histogram of Lengths") + theme(plo
t.title = element_text(hjust = 0.5))

Figure 10.5: Histogram of frequencies of the rules before and after the

pruning

The R code below generates Figure 10.5.

frequency <- data.frame(original = as.numeric(rules[, "freq"]), p
runed = as.numeric(rules.pruned[,
 "freq"]))
ggplot(melt(frequency), aes(value, fill = variable)) + geom_histo
gram(position = "dodge",
 binwidth = 0.05) + ggtitle("Histogram of Frequencies") + them
e(plot.title = element_text(hjust = 0.5))

320

The R code below generates Figure 10.6.

error <- data.frame(original = as.numeric(rules[, "err"]), pruned
 = as.numeric(rules.pruned[,
 "err"]))
ggplot(melt(error), aes(value, fill = variable)) + geom_histogram
(position = "dodge",
 binwidth = 0.01) + ggtitle("Histogram of Errors") + theme(plo
t.title = element_text(hjust = 0.5))

Figure 10.6: Histogram of errors of the rules before and after the pruning

It can be seen that, the lengths of rules are substantially reduced. For

example, a majority of the original rules have length of 6 (as the default max

length is set to be 6), while after pruning, only a slight percentage of the rules

have length of 6. Also, since rules are shortened, the reduction of frequencies

are also significant. In terms of errors, after pruning, the error distribution

has shifted to the left. Therefore, the rules are simplified without significant

sacrifice of accuracy.

For a comparison, we conduct one more experiment using the relative

decay with a threshold of 0.05 (maxDecay = 0.05). Results are shown in

Figures 7-9.

Analytics of Small Data

321

Figure 10.7: Histogram of lengths of the rules before and after the pruning

Figure 10.8: Histogram of frequenties of the rules before and after the

pruning

The R code below generates Figure 10.7.

rules.pruned <- pruneRule(rules, X, target, maxDecay = 0.05, type
Decay = 1)

length <- data.frame(original = as.numeric(rules[, "len"]), prune
d = as.numeric(rules.pruned[,
 "len"]))
ggplot(melt(length), aes(value, fill = variable)) + geom_histogra
m(position = "dodge",

322

 binwidth = 0.4) + ggtitle("Histogram of Lengths") + theme(plo
t.title = element_text(hjust = 0.5))

The R code below generates Figure 10.8.

frequency <- data.frame(original = as.numeric(rules[, "freq"]), p
runed = as.numeric(rules.pruned[,
 "freq"]))
ggplot(melt(frequency), aes(value, fill = variable)) + geom_histo
gram(position = "dodge",
 binwidth = 0.05) + ggtitle("Histogram of Frequencies") + them
e(plot.title = element_text(hjust = 0.5))

The R code below generates Figure 10.9.

error <- data.frame(original = as.numeric(rules[, "err"]), pruned
 = as.numeric(rules.pruned[,
 "err"]))
ggplot(melt(error), aes(value, fill = variable)) + geom_histogram
(position = "dodge",
 binwidth = 0.01) + ggtitle("Histogram of Errors") + theme(plo
t.title = element_text(hjust = 0.5))

Figure 10.9: Histogram of errors of the rules before and after the pruning

The changes of lengths, frequencies and errors, look similar to the

previous results using the absolute decay. An advantage of using relative

decay is that one does not need to know the baseline error of a dataset.

However, relative decay depends on the baseline error of each original rule,

Analytics of Small Data

323

and when the baseline error is small, e.g., 0, the relative error increase can be

large even if the absolute error increase is small.

Now let’s consider rule selection. The following R codes applies rule

selection to the pruned rule set.

rules.selected <- selectRuleRRF(rules.pruned, X, target)
rules.present <- presentRules(rules.selected, colnames(X))
print(cbind(ID = 1:nrow(rules.present), rules.present[, c("condit
ion", "pred")]))

After selection, only 16 rules are selected.

ID
[1,] "1"
[2,] "2"
[3,] "3"
[4,] "4"
[5,] "5"
[6,] "6"
[7,] "7"
[8,] "8"
[9,] "9"
[10,] "10"
[11,] "11"
[12,] "12"
[13,] "13"
[14,] "14"
[15,] "15"
[16,] "16"
condition

[1,] "FDG %in% c('L1','L2') & HippoNV %in% c('L1')"

[2,] "FDG %in% c('L1') & HippoNV %in% c('L1','L2')"

[3,] "PTGENDER %in% c('L2') & FDG %in% c('L2') & AV45 %in% c('
L1','L2') & rs3818361 %in% c('L2') & rs3851179 %in% c('L2')"
[4,] "AGE %in% c('L3') & FDG %in% c('L1') & HippoNV %in% c('L1
','L2')"
[5,] "PTEDUCAT %in% c('L1') & AV45 %in% c('L2') & HippoNV %in%
 c('L2') & rs610932 %in% c('L2')"
[6,] "HippoNV %in% c('L1') & rs3818361 %in% c('L1')"

[7,] "AV45 %in% c('L3') & HippoNV %in% c('L1','L2')
[8,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2') && rs37646

324

50 %in% c('L1')"
[9,] "AGE %in% c('L1') & PTGENDER %in% c('L2') & FDG %in% c('L
2') & AV45 %in% c('L1','L2') & HippoNV %in% c('L1')"
[10,] "AGE %in% c('L3') & PTGENDER %in% c('L1') & PTEDUCAT %in%
 c('L2') & AV45 %in% c('L1','L2')"
[11,] "AGE %in% c('L2') & PTEDUCAT %in% c('L2','L3') & HippoNV
 %in% c('L2','L3') & e4_1 %in% c('L2')"
[12,] "AGE %in% c('L2') & PTEDUCAT %in% c('L3') & e4_1 %in% c('
L1')"
[13,] "PTEDUCAT %in% c('L1','L3') & e4_1 %in% c('L1') & rs11136
000 %in% c('L1') & rs610932 %in% c('L1')"
[14,] "AGE %in% c('L2') & HippoNV %in% c('L2','L3') & rs3865444
 %in% c('L1')"
[15,] "AGE %in% c('L1','L2') & AV45 %in% c('L1')"
[16,] "PTEDUCAT %in% c('L1','L3') & FDG %in% c('L2','L3') & Hip
poNV %in% c('L2','L3')"

pred
[1,] "class_1"
[2,] "class_1"
[3,] "class_0"
[4,] "class_1"
[5,] "class_1"
[6,] "class_1"
[7,] "class_1"
[8,] "class_0"
[9,] "class_0"
[10,] "class_0"
[11,] "class_0"
[12,] "class_0"
[13,] "class_0"
[14,] "class_0"
[15,] "class_0"
[16,] "class_0"

print(cbind(ID = 1:nrow(rules.present), rules.present[, c("len",
"freq", "err")]))

ID len freq err
[1,] "1" "2" "0.279" "0.083"
[2,] "2" "2" "0.279" "0.09"
[3,] "3" "5" "0.029" "0.133"
[4,] "4" "3" "0.122" "0.016"
[5,] "5" "4" "0.031" "0.312"
[6,] "6" "2" "0.207" "0.121"
[7,] "7" "3" "0.172" "0.124"

Analytics of Small Data

325

[8,] "8" "4" "0.06" "0.194"
[9,] "9" "5" "0.006" "0"
[10,] "10" "4" "0.044" "0.13"
[11,] "11" "5" "0.019" "0.2"
[12,] "12" "3" "0.043" "0.182"
[13,] "13" "4" "0.037" "0.158"
[14,] "14" "3" "0.114" "0.203"
[15,] "15" "2" "0.234" "0.215"
[16,] "16" "3" "0.282" "0.144"

Now let’s extract the frequent variable interactions by the function

getFreqPattern(). Here, we discretize the continuous features to 3 levels

with equal frequency.

freqPattern <- getFreqPattern(rules.pruned)

top.pattern <- (freqPattern[which(as.numeric(freqPattern[, "len
"]) >= 2),][1:5,])
print(presentRules(top.pattern, colnames(X)))

And the top frequency variable interactions (with length greater than 2)

are shown below.

len sup conf
[1,] "2" "0.038" "1"
[2,] "2" "0.026" "1"
[3,] "2" "0.023" "0.991"
[4,] "2" "0.022" "0.953"
[5,] "2" "0.021" "0.99"
condition

[1,] "FDG %in% c('L2','L3') & HippoNV %in% c('L2','L3')"
[2,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2','L3')"
[3,] "HippoNV %in% c('L1') & rs3818361 %in% c('L1')"
[4,] "AV45 %in% c('L3') & HippoNV %in% c('L1')"
[5,] "rs610932 %in% c('L1') & HippoNV %in% c('L2','L3')"

pred
[1,] "class_0"
[2,] "class_0"
[3,] "class_1"
[4,] "class_1"
[5,] "class_0"

326

An ordered rule set can be built using the selected rules by the function

buildLearner().

learner <- buildLearner(rules.selected, X, target)
learner.readable <- presentRules(learner, colnames(X))
print(cbind(ID = 1:nrow(learner.readable), learner.readable[, c("
condition", "pred")]))

ID
[1,] "1"
[2,] "2"
[3,] "3"
[4,] "4"
[5,] "5"
[6,] "6"
[7,] "7"
[8,] "8"
[9,] "9"
[10,] "10"
[11,] "11"
[12,] "12"
condition

[1,] "AGE %in% c('L3') & FDG %in% c('L1') & HippoNV %in% c('L1
','L2')"
[2,] "FDG %in% c('L1','L2') & HippoNV %in% c('L1')"
[3,] "AGE %in% c('L2') & PTEDUCAT %in% c('L3') & e4_1 %in% c('
L1')"
[4,] "PTEDUCAT %in% c('L1','L3') & e4_1 %in% c('L1') & rs11136
000 %in% c('L1') & rs610932 %in% c('L1')"
[5,] "AGE %in% c('L3') & PTGENDER %in% c('L1') & AV45 %in% c('
L1','L2')"
[6,] "PTGENDER %in% c('L2') & FDG %in% c('L2') & AV45 %in% c('
L1','L2') & rs3818361 %in% c('L2') & rs3851179 %in% c('L2')"
[7,] "PTEDUCAT %in% c('L1','L3') & FDG %in% c('L2','L3') & Hip
poNV %in% c('L2','L3')"
[8,] "AV45 %in% c('L1','L2') & HippoNV %in% c('L2') & & rs3764
650 %in% c('L1')"
[9,] "FDG %in% c('L1') & HippoNV %in% c('L1','L2')"
[10,] "AGE %in% c('L2') & HippoNV %in% c('L2','L3') & rs3865444
 %in% c('L1')"
[11,] "AGE %in% c('L1','L2') & AV45 %in% c('L1')"
[12,] "Else"

pred
[1,] "class_1"
[2,] "class_1"

Analytics of Small Data

327

[3,] "class_0"
[4,] "class_0"
[5,] "class_0"
[6,] "class_0"
[7,] "class_0"
[8,] "class_0"
[9,] "class_1"
[10,] "class_0"
[11,] "class_0"
[12,] "class_0"

print(cbind(ID = 1:nrow(learner.readable), learner.readable[, c("
len", "freq", "err")]))

ID len freq err
[1,] "1" "3" "0.121856866537718" "0.0158730158730159"
[2,] "2" "2" "0.195357833655706" "0.118811881188119"
[3,] "3" "3" "0.034816247582205" "0.0555555555555556"
[4,] "4" "4" "0.02321083172147" "0.0833333333333334"
[5,] "5" "4" "0.0367504835589942" "0.105263157894737"
[6,] "6" "5" "0.0154738878143133" "0.125"
[7,] "7" "3" "0.2321083172147" "0.158333333333333"
[8,] "8" "4" "0.0212765957446809" "0.181818181818182"
[9,] "9" "2" "0.0328820116054159" "0.0588235294117647"
[10,] "10" "3" "0.0425531914893617" "0.181818181818182"
[11,] "11" "2" "0.0851063829787234" "0.204545454545455"
[12,] "12" "1" "0.158607350096712" "0.317073170731707"

IV. Exercises

Data analysis

1. Find 10 regression datasets from the UCI data repository or R

datasets. Use inTrees to do analysis. Identify the final list of rules.

Programming

2. Simulate a dataset that has 10 variables, and design some interactions

among the 10 variables (the form of the interactions is open-ended,

e.g., it could be rule-based interactions, or any other statistical

interactions). You can learn more from the simulation study in this

328

paper1 to help you conduct this simulation. Implement inTrees to

see if the interactions can be captured.

3. Increase the number of variables to be 100. Make the interaction

patterns sparse, e.g., only 20 variable interactions. Implement

inTrees to see if the interactions can be captured.

1 Friedman, J.H. and Popescu, B.E. Predictive learning via rule ensembles. Annals of applied

statistics, 2008.

Analytics of Small Data

329

CONCLUSION

Not to play devil’s advocate, this book is named as analytics of small data

for a reason. It doesn’t mean that the methods introduced in this book could

only be applied to small datasets. Rather, it is the approach of this book to

introduce analytics methods through exemplary datasets as small as possible,

small enough that we could grasp with perception or intuition, whatever

readily accessible to us. Then, we illustrate what questions we could ask and

what types of models we can build based on these small datasets. In this way,

we hope to connect perceivable intuition with abstract formulations. We

hope this endeavor is achieved by this book.

We also feel that we own an explanation of the cover image. It is a

computer running statistical analysis using R, which is connected with a 3D

printer in production. The computer analyzes the real-time measurements

obtained from the 3D printer and generates results for the 3D printer such

that the 3D printer can adjust its real-time production. This is what is

happening in real world. The point we’d like to convey is, data analytics is

330

not just some cyber activities. Its impact is not confined in office. It is actually

the brain device in many production systems and online operations such as

search engines. Its application is everywhere.

In writing this book, we owe great debts to many people who generously

share their materials and codes online. In online communities such as GitHub

and stackoverflow, you can find many free resources which can launch you

into a fast track of developing a project. Many insightful notes and technical

reports have been posted online. And nowadays researchers post their latest

results on arXiv.org so we could save much time without waiting for the

manuscript to go through the entire publication period that could be lengthy.

Of course, as students of our pioneers and servants of our discipline, our

greatest gratitude goes to our pioneers who have made solid contributions in

areas such as statistics, machine learning, and optimization, enabling us to

use the data analytics tools. As human beings, we are special fishes who are

aware of the water.

To conclude this book, notice that much efforts of this book are devoted

to show the development process of a technique that starts with a seed idea

and ends with the technique that can be used. Such development processes

are shown intuitively as much as we could. Also, in terms of completeness,

we more focus on completeness in the development process instead of topics.

There is an impression that that academic research is full of jargons, thus

translational efforts are needed. We aim to provide a framework to

consolidate our common sense with those jargons, particularly, the scientific

considerations beyond those jargons, so readers can develop access to the

wonderful resources available to us, made free by academic researchers, to

implement data analytics for real-world problems. In dealing with reality, it is

essentially performance and practice. In theory we speculate about reality, in

reality we apply theories and reflect upon theories. At any rate, the mode of

speculation of our mind is, as we believe, one essential faculty for us to learn

and make decisions. Thus, this book, through a mode of speculation in

introducing both theory and practice, aims to foster this capacity of

Analytics of Small Data

331

speculation and help us to come to terms with what is given (as our data),

help us to be critical, while not dismissive.

