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Students come to a classroom for knowledge. This is true, but we feel 

something is missing. Knowledge as we know is written and circulated. But, 

still, we feel a gap between us with knowledge, for there is always something 

in life that reminds us what we don’t know about what we know. To fill in 

the gap, we probably need that something we call as confidence. Thus, 

students come to a classroom not only just for knowledge, but also for 

confidence on knowledge. For the later aim, we need to comment on the 

workshop of the creation of knowledge. And the workshop revealed by one 

teacher is not necessary the same as the workshop revealed by another, as we 

can only retrospectively speculate what would have happened when our 

pioneers discovered the knowledge. Doing this kind of speculation is helpful, 

since it may enhance our faculty of critical thinking, capacity of learning 

theory, and commitment on practice. 

Thus, this book is not just a book of techniques. Rather, it is a book about 

techniques, about the workshops of researchers who work in the frontier of 

our academic area. Techniques are used for answering certain questions or 

meeting certain needs. This seems to be obvious. While less obvious is that, 

techniques give a structure for what kinds of questions we can formulate in 
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practice. Giving a structure is at the same time giving a limited scope, and 

thus, only certain types of structured questions can be formulated. For 

example, thinking of hypothesis testing, which first proposes a null 

hypothesis, then seeks evidence from the data to reject the null hypothesis. 

In this classic setting of hypothesis testing, “accepting” the hypothesis is not 

a valid option. This is the structured way to ask questions in a certain way. 

The structure is its strength, also its limitation.  

This is probably why it is often we see new comers in many areas find it 

is hard to ask the right questions. It is because that professionals in these 

areas have been educated with the mindset of asking the type of questions 

their techniques enable them to ask. This also means that knowing how the 

techniques work is very important. There are many books about data 

analytics techniques, so in this book, we discuss what principles we can use 

to invent these techniques, what assumptions are made, how mathematics is 

used to articulate these assumptions, and how these lead to neat formulations 

that generalize a wide range of real-world applications into generic and 

abstract forms. This makes us scientists. Meanwhile, as analytics is a practical 

area, we also need to develop engineer’s Craftsmanship. This means 

computational competency, programming skills, experiences, and insights 

that we can gain by practice. Not blind practice, but the type of practice 

informed by theory and can be used to reflect on theory retrospectively. 

Thus, the style of the book highlights a combination of technical 

concreteness and holistic thinking. As you could see, the Chapters are named 

as different qualities of holistic thinking in decision-makings, including 

“Abstraction”, “Recognition”, “Computation”, “Performance”, “Diagnosis”, 

“Balance”, “Scalability”, “Craftsmanship”, and “Synthesis”. It is true in 

nowadays “technology rules” environment, holistic thinking seems to be 

neglected.  But one can find so many examples to show that in real-world 

great decisions are made by someone who can articulate both panels’ 

strengths, as both are indispensable qualities for solving real-world problems. 

Holistic thinking is the foundation of how we formulate problems and how 

we could trust our formulations, as our formulations inevitably are only 
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biased and partial representation of the complex real-world problems. 

Holistic thinking is also the foundation of communication between team 

members of different backgrounds. With a diverse team, things that make 

sense intuitively will be very important to build team-wide trust in decision-

makings.  

This book is a collaborative work between two authors who both made 

substantial efforts. Particularly, Shuai focuses on the regression-based 

methods while Houtao focuses on the tree-based methods. Although these 

two types of methods represent two distinct cultures in statistical modeling, 

we have found many common considerations and principles underlying both 

cultures. Thus, we hope that a juxtaposition of both methods could help 

develop a unified picture of many existing data analytics tools.   

Last words to conclude the preface. The purpose of this book is not to 

encourage dismissal of the rigorous underpinnings of statistics and data 

analytics. Rather, we hope to help readers develop a critical attitude about 

techniques, while this critical attitude can only be enabled and maintained by 

a deep appreciation of the rigorous underpinnings of statistics and data 

analytics. You probably have heard of the saying that “technology is good 

when it works”. Technologies are cameras, which we can use to capture great 

moments in life; while on the other hand, they are also filters of life and only 

capture some of it. It is our hope that, after reading this book, you can use 

them to capture some truth of life.  
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CHAPTER 1: INTRODUCTION 
 

 

 

 

 

Overview of a Data Analytics Pipeline 

A typical data analytics pipeline consists of several major pillars. In the 

example shown in Figure 1.1, it has four pillars: sensor and devices, data 

preprocessing and feature engineering, feature selection and dimension 

reduction, modeling and data analysis. While this is not the only way to 

present the diverse data pipelines in real-world, they more or less resemble 

this architecture. 

 

 

Figure 1.1: Overview of a data analytics pipeline 
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The pipeline starts with a real-world problem, for which we are not sure 

about the underlying system/mechanism, but we are able to characterize the 

system by defining some variables. Then, we could develop sensors and 

devices to acquire measurements of these variables. These measurements, we 

call as data, are objective evidences that we can use to explore the statistical 

principles or mechanistic laws regulating the system behaviors. But, before 

analyzing the data and building models using the data, in practice, the data 

preprocessing and feature engineering are important. For example, some 

signals acquired by sensors are not interpretable or not easily compatible with 

human sense, such as the signal acquired by MRI scanning machines in the 

Fourier space. Data preprocessing also refers to removal of outliers or 

imputation of missing data, detection and removal of redundant features, to 

name a few. After the preprocessing, we may conduct feature selection and 

dimension reduction to distill or condense signals in the data and reduce 

noise. Finally, we are ready to conduct modeling and data analysis on the 

prepared dataset to gain knowledge and build prediction models of the real-

world system. Decision-makings such as prediction, intervention, and control 

policies can be derived based on the fitted models to optimize and control 

the real-world system. 

This book focuses on the last two pillars of this pipeline, the modeling, 

data analysis, feature selection, and dimension reduction methods. But it is 

helpful to keep in mind of the big picture of a data analytics pipeline. Because 

in practice, what works is the whole pipeline.    

 

Structure of the Chapters 

The structures of the Chapters follow the same manner.  

 Each chapter will introduce two or three techniques. In most cases, 

one technique is about regression model while another one is about 

tree model.  

 For each technique, we will highlight the intuition and rationale 

behind it. 
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 Then, we articulate the intuition, use math to formulate the learning 

problem, and present the full version of the analytic formulation. But, 

it is always important to remember its intuitive underpinning.  

 Then, we use R to implement the technique on both simulated and 

real-world dataset, present the analysis process (together with R 

code), show the dynamics in the analysis process, and comment on 

the results.  

 Some remarks are also made to enhance understanding of the 

techniques, reveal their different natures by other perspectives, 

reveal their limitations, and mention existing remedies to overcome 

these limitations.  

 

Topics in a Nutshell 

Data models – regression based techniques: 

 Chapter 2: Linear regression, least-square estimation, hypothesis 
testing, why normal distribution, its connection with experimental 
design, R-squared. 

 Chapter 3: Logistic regression, generalized least square estimation, 
iterative reweighted least square (IRLS) algorithm, approximated 
hypothesis testing, Ranking as a linear regression 

 Chapter 4: Bootstrap, data resampling, nonparametric hypothesis 
testing, nonparametric confidence interval estimation 

 Chapter 5: Overfitting and underfitting, limitation of R-squared, 
training dataset and testing dataset, random sampling, K-fold cross 
validation, the confusion matrix, false positive and false negative, 
and Receiver Operating Characteristics (ROC) curve 

 Chapter 6: Residual analysis, normal Q-Q plot, Cook’s distance, 
leverage, multicollinearity, subset selection, heterogeneity, clustering, 
Gaussian mixture model (GMM), and the Expectation-
Maximization (EM) algorithm 

 Chapter 7: Support Vector Machine (SVM), generalize data versus 
memorize data, maximum margin, support vectors, model 
complexity and regularization, primal-dual formulation, quadratic 
programming, KKT condition, kernel trick, kernel machines, SVM 
as a neural network model 
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 Chapter 8: LASSO, sparse learning, L1-norm and L2-norm 
regularization, Ridge regression, feature selection, shooting 
algorithm, Principal Component Analysis (PCA), eigenvalue 
decomposition, scree plot  

 Chapter 9: Kernel regression as generalization of linear regression 
model, kernel functions, local smoother regression model, k-nearest 
regression model, conditional variance regression model, 
heteroscedasticity, weighted least square estimation, model 
extension and stacking 

Algorithmic models – tree based techniques: 

 Chapter 2: Decision tree, entropy gain, node splitting, pre- and post-
pruning, empirical error, generalization error, pessimistic error by 
binomial approximation, greedy recursive splitting 

 Chapter 4: Random forest, Gini index, weak classifiers, probabilistic 
mechanism why random forest works 

 Chapter 5: Out-of-bag (OOB) error in random forest 

 Chapter 6: Importance score, partial dependency plot, residual 
analysis 

 Chapter 7: Ensemble learning, Adaboost, sampling with (or without) 
replacement 

 Chapter 8: Importance score in random forest, regularized random 
forests (RRF), guided regularized random forests (GRRF) 

 Chapter 9: System monitoring reformulated as classification, real-
time contrasts method (RTC), design of monitoring statistics, sliding 
window, anomaly detection, false alarm 

 Chapter 10: Integration of tree models, feature selection, and 
regression models in inTrees, random forest as a rule generator, rule 
extraction, pruning, selection, and summarization, confidence and 
support of rules, variable interactions, rule-based prediction 
 

In this book, we will use lower-case letters, e.g., 𝑥, to represent scalars, bold-

face lower-case letters, e.g., 𝒗, to represent vectors, and bold-face upper-case 

letters, e.g., 𝑾, to represent matrices.  
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CHAPTER 2: ABSTRACTION  
REGRESSION and TREE MODELS  

 

 

 

 

 

I. Overview 

Chapter 2 is about “Abstraction”. It concerns how we model and 

formulate a problem using specific mathematical models. Abstraction is powerful. 

With identification of a few main entities (usually called as variables or 

features) from the problem, and characterization of their relationships, we 

can free ourselves from the application context and focus on the study of 

these interconnected entities as a pure mathematical system. Consequences 

can be analytically (rather than speculatively) established within this 

abstracted framework, while phenomenon in the context could be identified 

as special instances of this abstracted model.  

Generally, there are two main types of cultures for statistical modeling. 

Prof. Leo Brienman made these two cultures explicit as he articulated in his 

seminar paper1. One is the “data modeling” culture, while another one is the 

“algorithmic modeling” culture. In this book, we will focus on two models 

                                                      
1 Leo Breiman, Statistical Modeling: The Two Cultures. Statistical Science, 2001. 
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that are representative of each culture: the linear regression models (data 

modeling) and decision tree models (algorithmic modeling). Linear regression 

is a great example about statistics-driven considerations in modeling, while 

decision tree is a great example about computational- and nonparametric-

driven considerations in modeling.  

Many real-world problems usually present themselves in the form as a 

mystery, as highlighted as a blackbox in Figure 2.1. In these problems, there 

is usually an output variable (denoted as 𝑦) we care about and want to predict; 

meanwhile, to help us better understand the uncertainty of the output 

variable, we have other variables which we call as predictors (denoted as 𝑥1, 

𝑥2, …, 𝑥𝑝). We know that there are relationships between the predictors and 

the output, but these relationships are unknown, due to our lack of 

understanding of the system. It is not always plausible or economically 

feasible to develop a Newtonian style characterization of the system using 

differential equations. 

 

 

Figure 2.1: The blackbox nature of many data science problems  

 

A common criterion for evaluating the success of any model, no matter 

what type of culture it belongs to, is the prediction performance on the 

output variable given the input variables. It is fair to say that, almost all the 

models in both cultures could be summarized using a generic form: 

𝑦 = 𝑓(𝒙) + 𝜖, 

where 𝑓(𝒙) reflects the deterministic part of 𝑦 that can be determined by 

knowing 𝒙 , and 𝜖  reflects the uncertain part of 𝑦  that could not be 

determined by 𝒙 alone. In some texts, 𝑓(𝒙) is also called the model of the 

mean structure, i.e., since given any value of 𝒙 we can predict 𝑦 in the sense 

of an average; 𝜖 is usually called as the error term, noise term, or residual 
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term. Thus, 𝑓(𝒙) is a function of 𝒙 while 𝜖 is usually a distribution such as 

Gaussian distribution with mean as zero.  

With this understanding, we could summarize the different principles of 

both cultures in designing their belonging models: 

 

Table 2.1: Comparison between two cultures of models 

 𝑓(𝑥) 𝜖 “Cosmology” 

Data 
Modeling 

Explicit form 
(e.g., linear 
regression) 

Statistical 
distribution 

(e.g., Gaussian) 

Imply Cause and 
effect; articulate 

uncertainty 

Algorithmic 
Modeling 

Implicit form 
(e.g., tree 
model) 

Rarely modeled 
as structured 
uncertainty; 

only 
acknowledged 
as meaningless 

noise  

Look for 
accurate 

surrogate for 
prediction; to fit 
the data rather 
than to explain 

the data 

 

II. Regression Models 

II.1 Rationale and Formulation 

Let’s consider a simple regression model, where there is only one 

predictor 𝑥 to predict the outcome 𝑦. Linear regression model assumes a 

linear form of 𝑓(𝑥), e.g., 

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥, 

and a distribution form for 𝜖, e.g.,  

𝜖~𝑁(0, 𝜎𝜀
2). 

With this model, for any given value of 𝑥, we could predict the value of 𝑦 as 

𝛽0 + 𝛽1𝑥. Apparently, a few assumptions have been made: 

 There is linear relationship between 𝑥  and 𝑦 . And this linear 

relationship remains the same for all the values of 𝑥. This is often 

referred as a global relationship between 𝑥 and 𝑦. Sometimes this 

assumption of global relationship is too strong, e.g., as shown in the 
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Figure 2.2 below, in many drug research works, it is found that the 

dose (𝑥) is related to the effect of the drug (𝑦) in a varying manner 

that depends on the value of 𝑥. But, still, from Figure 2.2 we can also 

see that the linear line captures an essential component in the 

relationship between 𝑥  and 𝑦 , providing a good statistical 

approximation.    

 

 

Figure 2.2: Complex relationship between dose (𝑥) and drug response (𝑦), 

while the linear line also provides a good statistical approximation 

 

 The model suggests a fundamental unpredictability of 𝑦. That is to 

say, if 𝑦 is generated by a combination of the signal (the 𝑓(𝑥)) and 

the noise (𝜖), we could never predict the noise part. This has at least 

two implications. First, we can quantify the predictability of a dataset, 

by taking the ratio of 
𝜎𝑦
2−𝜎𝜀

2

𝜎𝑦
2 . Here, 𝜎𝑦

2 is the overall variance of the 

output regardless of any predictor information. This ratio is named 

as R-squared, that ranges from 0 (zero predictability) to 1 (perfect 

predictability). Second, the significance of 𝑥 in predicting 𝑦, and the 

accuracy of 𝑥 in predicting 𝑦, are two different concepts. A predictor 

𝑥 could be inadequate in predicting 𝑦, e.g., the R-squared could be 

as low as 0.1, but it still could be statistically significant. This happens 

a lot in social science research and education research projects. 
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 The noise is usually modeled as Gaussian distribution, but this 

assumption could be relaxed. Violation of the Gaussian assumption 

for 𝜀 could be a concern in many applications, but not as severe as 

other violations such as outliers in the dataset. Of course, this 

assertion is empirical, only mentioned here to guide practices, and 

should not be taken as a strict rule.  

 

II. 2 Theory/Method 

Parameter Estimation: The regression parameters could be estimated 

by the least-square estimation method. A training dataset is collected to 

estimate the unknown parameters in the model. The basic idea is, the best 

parameters should fit the training data as much as possible. This is illustrated 

in Figure 2.3, where two principles to fit a linear regression model are shown. 

The vertical offsets shown in the right of Figure 2.3 is the most popular 

approach though. Comparing with the perpendicular offsets shown in the 

left of Figure 2.3, the vertical offset leads to tractability in analytic forms, 

which is thus more preferred. 

 

 

 

 

Figure 2.3: Two principles to fit a linear regression model: (left) 

perpendicular offsets; (right) vertical offsets. 

 

 

Actually, the principle of minimizing vertical offsets leads to the least-

squares estimation of linear regression models. We can exercise the least 
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squares estimation using the simple regression model. The objective to 

determine the optimal line (or equivalently we can say to determine the 

optimal regression parameters), based on the principle suggested in the right 

one in Figure 2.3, is the sum of the squared of the vertical derivations of the 

observed data points from the line. Suppose that we have collected 𝑁 data 

points, denoted as, (𝑥𝑛, 𝑦𝑛) for 𝑛 = 1, 2, … ,𝑁. 

Then, the sum of the squared of the vertical derivations of the observed 

data points from the line is: 

𝑙(𝛽0, 𝛽1) = ∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]
2𝑁

𝑛=1 . 

To estimate 𝛽0  and 𝛽1  is to minimize this least-square loss function 

𝑙(𝛽0, 𝛽1). Thus, we could take derivatives of 𝑙(𝛽0, 𝛽1) regarding the two 

parameters and set them to be zero, to derive the estimation equations: 

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽0
= −2∑ [𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0, 

𝜕𝑙(𝛽0,𝛽1)

𝜕𝛽1
= −2∑ 𝑥𝑛[𝑦𝑛 − (𝛽0 + 𝛽1𝑥𝑛)]

𝑁
𝑛=1 = 0. 

Putting these into a succinct way, we can derive  

[
𝑁 ∑ 𝑥𝑛

𝑁
𝑛=1

∑ 𝑥𝑛
𝑁
𝑛=1 ∑ 𝑥𝑛

2𝑁
𝑛=1

] [
𝛽0
𝛽1
] = [

∑ 𝑦𝑛
𝑁
𝑛=1

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1

]. 

Thus, we can solve these two equations and derive the estimator of 𝛽0 

and 𝛽1 as 

𝛽0 =
(∑ 𝑦𝑛

𝑁
𝑛=1 )(∑ 𝑥𝑛

2𝑁
𝑛=1 )−(∑ 𝑥𝑛

𝑁
𝑛=1 )(∑ 𝑥𝑛𝑦𝑛

𝑁
𝑛=1 )

𝑛∑ 𝑥𝑛
2𝑁

𝑛=1 −(∑ 𝑥𝑛
𝑁
𝑛=1 )

2 , 

𝛽1 =
∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

∑ 𝑥𝑛
2𝑁

𝑛=1 −𝑁�̅�2
. 

While the above mathematical expression seems to be complex, there is 

another angle to take a look at it. Notice that the sample correlation between 

𝑥 and 𝑦 is: 

𝑐𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑛−�̅�)
𝑁
𝑛=1 (𝑦𝑛−�̅�)

𝑁−1
=

∑ 𝑥𝑛𝑦𝑛
𝑁
𝑛=1 −𝑁�̅��̅�

𝑁−1
, 

Also, the sample variance is defined as 

𝑣𝑎𝑟(𝑥) =
∑ 𝑥𝑛

2𝑁
𝑛=1 −𝑁�̅�2

𝑁−1
. 

We can rewrite the estimators of 𝛽0 and 𝛽1 as 
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𝛽0 = 𝑦 − 𝛽1𝑥, 

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
. 

A simple example: Let’s practice the estimation method using a simple 

example.  The dataset is shown in Table 2.2: 

 

Table 2.2: An exemplary dataset 

𝑋 1 3 3 5 5 6 8 9 

𝑌 2 3 5 4 6 5 7 8 

 

The R-code to verify your calculation: 

## Simple example of regression with one predictor 
data = data.frame(rbind(c(1,2),c(3,3),c(3,5),c(5,4),c(5,6),c(6,
5),c(8,7),c(9,8))) 
colnames(data) = c("Y","X") 
str(data) 

lm.YX <- lm(Y ~ X, data = data) 
summary(lm.YX) 

 

Extension to multivariate regression model: While this is the case for 

a simple regression model, we can extend this experience to a more general 

case: 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 + 𝜀. 

To fit this multivariate linear regression model, we collect 𝑛 data points, 

denoted as 

𝒚 = [

𝑦1
𝑦2
⋮
𝑦𝑁

], 𝐗 = [

1 𝑥11 𝑥21 ⋯ 𝑥𝑝1
1 𝑥12 𝑥22 ⋯ 𝑥𝑝2

⋮
1

⋮
𝑥1𝑁

⋮
𝑥2𝑁

⋮
⋯

⋮
𝑥𝑝𝑁

], 

where 𝒚 ∈ 𝑅𝑁×1 denotes for the 𝑛 measurements of the response variable, 

and 𝐗 ∈ 𝑅𝑁×(𝑝+1)  denotes for the design matrix that includes the 𝑁 

measurements of the 𝑝 input variables. 
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Then, the regression model can be rewritten in its matrix form as: 

𝒚 = 𝐗𝜷 + 𝜺. 

Here, 𝜷 ∈ 𝑅(𝑝+1)×1  denotes for the regression parameters and 𝜺 ∈

𝑅𝑁×1  denotes for the 𝑁 residuals which are assumed to follow a normal 

distribution with mean as zero and variance as 𝜎𝜀
2. 

 A detailed presentation of them is shown in below: 

𝜷 = [

𝛽0
𝛽1
⋮
𝛽𝑝

], and 𝜺 = [

𝜀1
𝜀2
⋮
𝜀𝑁

]. 

Then, to estimate 𝜷, we can derive the optimization formulation in matrix 

form as: 

min
𝜷
(𝒀 − 𝐗𝜷)𝑇(𝒀 − 𝐗𝜷), 

To solve this optimization problem, we can take the gradient of the 

objective function and set it to be zero: 

𝜕(𝒀−𝐗𝜷)𝑇(𝒀−𝐗𝜷)

𝜕𝜷
= 0, 

which gives rise to the equation: 

𝐗𝑇(𝒀 − 𝐗𝜷) = 0. 

This leads to the least square estimator of  𝜷 as 

�̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀. 

A resemblance can be easily detected between �̂� = (𝐗𝑇𝐗)−1𝐗𝑇𝒀 with 

𝛽1 =
𝑐𝑜𝑣(𝑥,𝑦)

𝑣𝑎𝑟(𝑥)
 by noticing that 𝐗𝑇𝒀 (corresponds to 𝑐𝑜𝑣(𝑥, 𝑦)) reflects the 

correlation between predictors and output, and 𝐗𝑇𝐗  (corresponds to 

𝑣𝑎𝑟(𝑥)) reflects the variability of the predictors. 
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Hypothesis testing of regression parameters: It is important to 

recognize that, since 𝒚 is a random vector and induce uncertainty, �̂� is a 

random vector as well. The mean of �̂� is 𝜷, as 

𝐸(�̂�) = 𝐸[(𝐗𝑇𝐗)−1𝐗𝑇𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐸[𝒚] = (𝐗𝑇𝐗)−1𝐗𝑇𝐗𝜷 = 𝜷. 

While the covariance matrix of �̂� can be readily derived as 

𝑐𝑜𝑣(�̂�) = 𝜎𝜀
2(𝐗𝑇𝐗)−1. 

This result lays the foundation for developing hypothesis testing of the 

regression parameters.  

For example, as a typical hypothesis testing question, let’s say, the null 

hypothesis is  

𝐻0: 𝛽𝑖 = 0. 

By theory, it is known that �̂�𝑖~𝑁(𝛽𝑖,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). Thus, if our null hypothesis 

is true, then, �̂�𝑖~𝑁(0,
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖
). This gives us the theoretical ground to make 

conjecture of what our estimate �̂�𝑖 is “supposed to be”, i.e., as shown below, 

�̂�𝑖 is supposed to come from a normal distribution with mean as zero and 

variance as 
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 (in a specific application, 
𝜎𝜀
2

𝒙𝑖
𝑇𝒙𝑖

 can be calculated and take a 

specific value):  

 

 

Figure 2.4: The distribution of �̂�𝑖 
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Based on this theory, we can see there is clearly a dominance of likelihood 

of what kind of �̂�𝑖 we can observe. We could define a range of �̂�𝑖 that we 

believe as plausible (i.e., if the null hypothesis is true, then it is normal to see 

this value of �̂�𝑖). Note that I use plausible in contrast with possible, since our 

theory tells us any value is always possible, but the possibility is not equally 

distributed among all the values as shown in the Figure 2.4. Also, our 

common sense tells us that some extreme values are always suspicious, 

pointing to rare chance. We may define a level of probability that represents 

our threshold of rare chance. We coin this threshold level as 𝛼.  

 

 

Figure 2.5: The framework of hypothesis testing  

 

Now we have almost established the framework of hypothesis testing for 

regression parameters. With the threshold level 𝛼, we have made a decision that 

we will conclude that any value of �̂�𝑖 that falls into either side of the two 

extreme regions is unlikely – if the null hypothesis is true. Thus, if we see 

value in either side of the two extreme regions, we will reject the null 

hypothesis, since this indicates a strong conflict between theory (things are 

supposed to be) and our empirical evidence (as what we observed on �̂�𝑖 ). 

This framework is shown in Figure 2.5. 
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Of course, we are conscious that we make a decision with a risk. We may 

be wrong, since even if the null hypothesis is true, there is still a small 

probability, 𝛼, that we may observe the �̂�𝑖 falls into either side of the two 

extreme regions. But we have accepted this risk. This risk is called the Type 

1 Error.  

 

II.3 R Lab 

In this section, we illustrate step-by-step R codes to show how the linear 

regression model can be used in real-world data analysis. A distinct feature of 

this illustration lies on the “real-worldliness” of the data that embodies both 

statistical regularities (such that this analysis is enabled and called for) and 

realistic irregularities (such that we may recall the famous saying of Prof. 

George Box – “all models are wrong, some are useful”). Making informed 

decisions by drawing from rigorous theories, while at the same time, 

maintaining a critical attitude of theory, should both present simultaneously 

in practices of data analytics.  

Here, our data is from a study of Alzheimer’s disease that collected 

demographics information and some genetic variables from hundreds of 

subjects. The goal of this dataset is to use these predictors to predict the score 

called Mini-Mental State Examination (MMSCORE) which is a clinical score 

(from 0-30) for determining Alzheimer’s disease, i.e., a MMSCORE of 20 to 24 

suggests mild dementia, 13 to 20 suggests moderate dementia, and less than 

12 indicates severe dementia.  

First, let’s load the data into the R workshop:  

#### Example: Alzheimer's Disease 
# filename  
setwd("�]�u�ƒ�•�ƒ�Ž�›�–�‹�…�•/data") 
AD <- read.csv('AD_bl.csv', header = TRUE) 
AD$ID = c(1:dim(AD)[1]) 

It is a nice habit to make detailed documentations of the variables with R 

using comments: 


